Goto

Collaborating Authors

 Ishii, Shin


A Simple, Solid, and Reproducible Baseline for Bridge Bidding AI

arXiv.org Artificial Intelligence

Contract bridge, a cooperative game characterized by imperfect information and multi-agent dynamics, poses significant challenges and serves as a critical benchmark in artificial intelligence (AI) research. Success in this domain requires agents to effectively cooperate with their partners. This study demonstrates that an appropriate combination of existing methods can perform surprisingly well in bridge bidding against WBridge5, a leading benchmark in the bridge bidding system and a multiple-time World Computer-Bridge Championship winner. Our approach is notably simple, yet it outperforms the current state-of-the-art methodologies in this field. Furthermore, we have made our code and models publicly available as open-source software. This initiative provides a strong starting foundation for future bridge AI research, facilitating the development and verification of new strategies and advancements in the field.


A Batch Sequential Halving Algorithm without Performance Degradation

arXiv.org Machine Learning

In this paper, we investigate the problem of pure exploration in the context of multi-armed bandits, with a specific focus on scenarios where arms are pulled in fixed-size batches. Batching has been shown to enhance computational efficiency, but it can potentially lead to a degradation compared to the original sequential algorithm's performance due to delayed feedback and reduced adaptability. We introduce a simple batch version of the Sequential Halving (SH) algorithm (Karnin et al., 2013) and provide theoretical evidence that batching does not degrade the performance of the original algorithm under practical conditions. Furthermore, we empirically validate our claim through experiments, demonstrating the robust nature of the SH algorithm in fixed-size batch settings.


Pgx: Hardware-Accelerated Parallel Game Simulators for Reinforcement Learning

arXiv.org Artificial Intelligence

We propose Pgx, a suite of board game reinforcement learning (RL) environments written in JAX and optimized for GPU/TPU accelerators. By leveraging JAX's auto-vectorization and parallelization over accelerators, Pgx can efficiently scale to thousands of simultaneous simulations over accelerators. In our experiments on a DGX-A100 workstation, we discovered that Pgx can simulate RL environments 10-100x faster than existing implementations available in Python. Pgx includes RL environments commonly used as benchmarks in RL research, such as backgammon, chess, shogi, and Go. Additionally, Pgx offers miniature game sets and baseline models to facilitate rapid research cycles. We demonstrate the efficient training of the Gumbel AlphaZero algorithm with Pgx environments. Overall, Pgx provides high-performance environment simulators for researchers to accelerate their RL experiments. Pgx is available at https://github.com/sotetsuk/pgx.


End-to-End Policy Gradient Method for POMDPs and Explainable Agents

arXiv.org Artificial Intelligence

Real-world decision-making problems are often partially observable, and many can be formulated as a Partially Observable Markov Decision Process (POMDP). When we apply reinforcement learning (RL) algorithms to the POMDP, reasonable estimation of the hidden states can help solve the problems. Furthermore, explainable decision-making is preferable, considering their application to real-world tasks such as autonomous driving cars. We proposed an RL algorithm that estimates the hidden states by end-to-end training, and visualize the estimation as a state-transition graph. Experimental results demonstrated that the proposed algorithm can solve simple POMDP problems and that the visualization makes the agent's behavior interpretable to humans.


MarmoNet: a pipeline for automated projection mapping of the common marmoset brain from whole-brain serial two-photon tomography

arXiv.org Machine Learning

Understanding the connectivity in the brain is an important prerequisite for understanding how the brain processes information. In the Brain/MINDS project, a connectivity study on marmoset brains uses two-photon microscopy fluorescence images of axonal projections to collect the neuron connectivity from defined brain regions at the mesoscopic scale. The processing of the images requires the detection and segmentation of the axonal tracer signal. The objective is to detect as much tracer signal as possible while not misclassifying other background structures as the signal. This can be challenging because of imaging noise, a cluttered image background, distortions or varying image contrast cause problems. We are developing MarmoNet, a pipeline that processes and analyzes tracer image data of the common marmoset brain. The pipeline incorporates state-of-the-art machine learning techniques based on artificial convolutional neural networks (CNN) and image registration techniques to extract and map all relevant information in a robust manner. The pipeline processes new images in a fully automated way. This report introduces the current state of the tracer signal analysis part of the pipeline.


Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning

arXiv.org Machine Learning

We propose a new regularization method based on virtual adversarial loss: a new measure of local smoothness of the conditional label distribution given input. Virtual adversarial loss is defined as the robustness of the conditional label distribution around each input data point against local perturbation. Unlike adversarial training, our method defines the adversarial direction without label information and is hence applicable to semi-supervised learning. Because the directions in which we smooth the model are only "virtually" adversarial, we call our method virtual adversarial training (VAT). The computational cost of VAT is relatively low. For neural networks, the approximated gradient of virtual adversarial loss can be computed with no more than two pairs of forward- and back-propagations. In our experiments, we applied VAT to supervised and semi-supervised learning tasks on multiple benchmark datasets. With a simple enhancement of the algorithm based on the entropy minimization principle, our VAT achieves state-of-the-art performance for semi-supervised learning tasks on SVHN and CIFAR-10.


Neural Sequence Model Training via $\alpha$-divergence Minimization

arXiv.org Machine Learning

We propose a new neural sequence model training method in which the objective function is defined by $\alpha$-divergence. We demonstrate that the objective function generalizes the maximum-likelihood (ML)-based and reinforcement learning (RL)-based objective functions as special cases (i.e., ML corresponds to $\alpha \to 0$ and RL to $\alpha \to1$). We also show that the gradient of the objective function can be considered a mixture of ML- and RL-based objective gradients. The experimental results of a machine translation task show that minimizing the objective function with $\alpha > 0$ outperforms $\alpha \to 0$, which corresponds to ML-based methods.


Principal Sensitivity Analysis

arXiv.org Machine Learning

We present a novel algorithm (Principal Sensitivity Analysis; PSA) to analyze the knowledge of the classifier obtained from supervised machine learning techniques. In particular, we define principal sensitivity map (PSM) as the direction on the input space to which the trained classifier is most sensitive, and use analogously defined k-th PSM to define a basis for the input space. We train neural networks with artificial data and real data, and apply the algorithm to the obtained supervised classifiers. We then visualize the PSMs to demonstrate the PSA's ability to decompose the knowledge acquired by the trained classifiers.


Deep learning of fMRI big data: a novel approach to subject-transfer decoding

arXiv.org Machine Learning

As a technology to read brain states from measurable brain activities, brain decoding are widely applied in industries and medical sciences. In spite of high demands in these applications for a universal decoder that can be applied to all individuals simultaneously, large variation in brain activities across individuals has limited the scope of many studies to the development of individual-specific decoders. In this study, we used deep neural network (DNN), a nonlinear hierarchical model, to construct a subject-transfer decoder. Our decoder is the first successful DNN-based subject-transfer decoder. When applied to a large-scale functional magnetic resonance imaging (fMRI) database, our DNN-based decoder achieved higher decoding accuracy than other baseline methods, including support vector machine (SVM). In order to analyze the knowledge acquired by this decoder, we applied principal sensitivity analysis (PSA) to the decoder and visualized the discriminative features that are common to all subjects in the dataset. Our PSA successfully visualized the subject-independent features contributing to the subject-transferability of the trained decoder.


Heterogeneous Component Analysis

Neural Information Processing Systems

In bioinformatics it is often desirable to combine data from various measurement sources and thus structured feature vectors are to be analyzed that possess different intrinsic blocking characteristics (e.g., different patterns of missing values, observation noiselevels, effective intrinsic dimensionalities). We propose a new machine learning tool, heterogeneous component analysis (HCA), for feature extraction in order to better understand the factors that underlie such complex structured heterogeneous data. HCA is a linear block-wise sparse Bayesian PCA based not only on a probabilistic model with block-wise residual variance terms but also on a Bayesian treatment of a block-wise sparse factor-loading matrix. We study various algorithmsthat implement our HCA concept extracting sparse heterogeneous structure by obtaining common components for the blocks and specific components withineach block. Simulations on toy and bioinformatics data underline the usefulness of the proposed structured matrix factorization concept.