Goto

Collaborating Authors

 Isensee, Fabian


Anatomy-informed Data Augmentation for Enhanced Prostate Cancer Detection

arXiv.org Artificial Intelligence

Data augmentation (DA) is a key factor in medical image analysis, such as in prostate cancer (PCa) detection on magnetic resonance images. State-of-the-art computer-aided diagnosis systems still rely on simplistic spatial transformations to preserve the pathological label post transformation. However, such augmentations do not substantially increase the organ as well as tumor shape variability in the training set, limiting the model's ability to generalize to unseen cases with more diverse localized soft-tissue deformations. We propose a new anatomy-informed transformation that leverages information from adjacent organs to simulate typical physiological deformations of the prostate and generates unique lesion shapes without altering their label. Due to its lightweight computational requirements, it can be easily integrated into common DA frameworks. We demonstrate the effectiveness of our augmentation on a dataset of 774 biopsy-confirmed examinations, by evaluating a state-of-the-art method for PCa detection with different augmentation settings.


USE-Evaluator: Performance Metrics for Medical Image Segmentation Models with Uncertain, Small or Empty Reference Annotations

arXiv.org Artificial Intelligence

Performance metrics for medical image segmentation models are used to measure the agreement between the reference annotation and the predicted segmentation. Usually, overlap metrics, such as the Dice, are used as a metric to evaluate the performance of these models in order for results to be comparable. However, there is a mismatch between the distributions of cases and difficulty level of segmentation tasks in public data sets compared to clinical practice. Common metrics fail to measure the impact of this mismatch, especially for clinical data sets that include low signal pathologies, a difficult segmentation task, and uncertain, small, or empty reference annotations. This limitation may result in ineffective research of machine learning practitioners in designing and optimizing models. Dimensions of evaluating clinical value include consideration of the uncertainty of reference annotations, independence from reference annotation volume size, and evaluation of classification of empty reference annotations. We study how uncertain, small, and empty reference annotations influence the value of metrics for medical image segmentation on an in-house data set regardless of the model. We examine metrics behavior on the predictions of a standard deep learning framework in order to identify metrics with clinical value. We compare to a public benchmark data set (BraTS 2019) with a high-signal pathology and certain, larger, and no empty reference annotations. We may show machine learning practitioners, how uncertain, small, or empty reference annotations require a rethinking of the evaluation and optimizing procedures. The evaluation code was released to encourage further analysis of this topic. https://github.com/SophieOstmeier/UncertainSmallEmpty.git


MedNeXt: Transformer-driven Scaling of ConvNets for Medical Image Segmentation

arXiv.org Artificial Intelligence

There has been exploding interest in embracing Transformer-based architectures for medical image segmentation. However, the lack of large-scale annotated medical datasets make achieving performances equivalent to those in natural images challenging. Convolutional networks, in contrast, have higher inductive biases and consequently, are easily trainable to high performance. Recently, the ConvNeXt architecture attempted to modernize the standard ConvNet by mirroring Transformer blocks. In this work, we improve upon this to design a modernized and scalable convolutional architecture customized to challenges of data-scarce medical settings. We introduce MedNeXt, a Transformer-inspired large kernel segmentation network which introduces - 1) A fully ConvNeXt 3D Encoder-Decoder Network for medical image segmentation, 2) Residual ConvNeXt up and downsampling blocks to preserve semantic richness across scales, 3) A novel technique to iteratively increase kernel sizes by upsampling small kernel networks, to prevent performance saturation on limited medical data, 4) Compound scaling at multiple levels (depth, width, kernel size) of MedNeXt. This leads to state-of-the-art performance on 4 tasks on CT and MRI modalities and varying dataset sizes, representing a modernized deep architecture for medical image segmentation. Our code is made publicly available at: https://github.com/MIC-DKFZ/MedNeXt.


Exploring new ways: Enforcing representational dissimilarity to learn new features and reduce error consistency

arXiv.org Artificial Intelligence

Independently trained machine learning models tend to learn similar features. Given an ensemble of independently trained models, this results in correlated predictions and common failure modes. Previous attempts focusing on decorrelation of output predictions or logits yielded mixed results, particularly due to their reduction in model accuracy caused by conflicting optimization objectives. In this paper, we propose the novel idea of utilizing methods of the representational similarity field to promote dissimilarity during training instead of measuring similarity of trained models. To this end, we promote intermediate representations to be dissimilar at different depths between architectures, with the goal of learning robust ensembles with disjoint failure modes. We show that highly dissimilar intermediate representations result in less correlated output predictions and slightly lower error consistency, resulting in higher ensemble accuracy. With this, we shine first light on the connection between intermediate representations and their impact on the output predictions.


The KiTS21 Challenge: Automatic segmentation of kidneys, renal tumors, and renal cysts in corticomedullary-phase CT

arXiv.org Artificial Intelligence

This paper presents the challenge report for the 2021 Kidney and Kidney Tumor Segmentation Challenge (KiTS21) held in conjunction with the 2021 international conference on Medical Image Computing and Computer Assisted Interventions (MICCAI). KiTS21 is a sequel to its first edition in 2019, and it features a variety of innovations in how the challenge was designed, in addition to a larger dataset. A novel annotation method was used to collect three separate annotations for each region of interest, and these annotations were performed in a fully transparent setting using a web-based annotation tool. Further, the KiTS21 test set was collected from an outside institution, challenging participants to develop methods that generalize well to new populations. Nonetheless, the top-performing teams achieved a significant improvement over the state of the art set in 2019, and this performance is shown to inch ever closer to human-level performance. An in-depth meta-analysis is presented describing which methods were used and how they faired on the leaderboard, as well as the characteristics of which cases generally saw good performance, and which did not. Overall KiTS21 facilitated a significant advancement in the state of the art in kidney tumor segmentation, and provides useful insights that are applicable to the field of semantic segmentation as a whole.


Transformer Utilization in Medical Image Segmentation Networks

arXiv.org Artificial Intelligence

Owing to success in the data-rich domain of natural images, Transformers have recently become popular in medical image segmentation. However, the pairing of Transformers with convolutional blocks in varying architectural permutations leaves their relative effectiveness to open interpretation. We introduce Transformer Ablations that replace the Transformer blocks with plain linear operators to quantify this effectiveness. With experiments on 8 models on 2 medical image segmentation tasks, we explore -- 1) the replaceable nature of Transformer-learnt representations, 2) Transformer capacity alone cannot prevent representational replaceability and works in tandem with effective design, 3) The mere existence of explicit feature hierarchies in transformer blocks is more beneficial than accompanying self-attention modules, 4) Major spatial downsampling before Transformer modules should be used with caution.


Why is the winner the best?

arXiv.org Artificial Intelligence

International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from these competitions. Do they really generate scientific progress? What are common and successful participation strategies? What makes a solution superior to a competing method? To address this gap in the literature, we performed a multi-center study with all 80 competitions that were conducted in the scope of IEEE ISBI 2021 and MICCAI 2021. Statistical analyses performed based on comprehensive descriptions of the submitted algorithms linked to their rank as well as the underlying participation strategies revealed common characteristics of winning solutions. These typically include the use of multi-task learning (63%) and/or multi-stage pipelines (61%), and a focus on augmentation (100%), image preprocessing (97%), data curation (79%), and postprocessing (66%). The "typical" lead of a winning team is a computer scientist with a doctoral degree, five years of experience in biomedical image analysis, and four years of experience in deep learning. Two core general development strategies stood out for highly-ranked teams: the reflection of the metrics in the method design and the focus on analyzing and handling failure cases. According to the organizers, 43% of the winning algorithms exceeded the state of the art but only 11% completely solved the respective domain problem. The insights of our study could help researchers (1) improve algorithm development strategies when approaching new problems, and (2) focus on open research questions revealed by this work.


Precise Energy Consumption Measurements of Heterogeneous Artificial Intelligence Workloads

arXiv.org Artificial Intelligence

With the rise of artificial intelligence (AI) in recent years and the subsequent increase in complexity of the applied models, the growing demand in computational resources is starting to pose a significant challenge. The need for higher compute power is being met with increasingly more potent accelerator hardware as well as the use of large and powerful compute clusters. However, the gain in prediction accuracy from large models trained on distributed and accelerated systems ultimately comes at the price of a substantial increase in energy demand, and researchers have started questioning the environmental friendliness of such AI methods at scale. Consequently, awareness of energy efficiency plays an important role for AI model developers and hardware infrastructure operators likewise. The energy consumption of AI workloads depends both on the model implementation and the composition of the utilized hardware. Therefore, accurate measurements of the power draw of respective AI workflows on different types of compute nodes is key to algorithmic improvements and the design of future compute clusters and hardware. Towards this end, we present measurements of the energy consumption of two typical applications of deep learning models on different types of heterogeneous compute nodes. Our results indicate that 1. contrary to common approaches, deriving energy consumption directly from runtime is not accurate, but the consumption of the compute node needs to be considered regarding its composition; 2. neglecting accelerator hardware on mixed nodes results in overproportional inefficiency regarding energy consumption; 3. energy consumption of model training and inference should be considered separately - while training on GPUs outperforms all other node types regarding both runtime and energy consumption, inference on CPU nodes can be comparably efficient. One advantage of our approach is the fact that the information on energy consumption is available to all users of the supercomputer and not just those with administrator rights, enabling an easy transfer to other workloads alongside a raise in user-awareness of energy consumption.


GP-ConvCNP: Better Generalization for Convolutional Conditional Neural Processes on Time Series Data

arXiv.org Machine Learning

Neural Processes (NPs) are a family of conditional generative models that are able to model a distribution over functions, in a way that allows them to perform predictions at test time conditioned on a number of context points. A recent addition to this family, Convolutional Conditional Neural Processes (ConvCNP), have shown remarkable improvement in performance over prior art, but we find that they sometimes struggle to generalize when applied to time series data. In particular, they are not robust to distribution shifts and fail to extrapolate observed patterns into the future. By incorporating a Gaussian Process into the model, we are able to remedy this and at the same time improve performance within distribution. As an added benefit, the Gaussian Process reintroduces the possibility to sample from the model, a key feature of other members in the NP family.


Unsupervised Anomaly Localization using Variational Auto-Encoders

arXiv.org Machine Learning

An assumption-free automatic check of medical images for potentially overseen anomalies would be a valuable assistance for a radiologist. Deep learning and especially Variational Auto-Encoders (VAEs) have shown great potential in the unsupervised learning of data distributions. In principle, this allows for such a check and even the localization of parts in the image that are most suspicious. Currently, however, the reconstruction-based localization by design requires adjusting the model architecture to the specific problem looked at during evaluation. This contradicts the principle of building assumption-free models. We propose complementing the localization part with a term derived from the Kullback-Leibler (KL)-divergence. For validation, we perform a series of experiments on FashionMNIST as well as on a medical task including >1000 healthy and >250 brain tumor patients. Results show that the proposed formalism outperforms the state of the art VAE-based localization of anomalies across many hyperparameter settings and also shows a competitive max performance.