Goto

Collaborating Authors

 Isele, David


Graph-Grounded LLMs: Leveraging Graphical Function Calling to Minimize LLM Hallucinations

arXiv.org Artificial Intelligence

The adoption of Large Language Models (LLMs) is rapidly expanding across various tasks that involve inherent graphical structures. Graphs are integral to a wide range of applications, including motion planning for autonomous vehicles, social networks, scene understanding, and knowledge graphs. Many problems, even those not initially perceived as graph-based, can be effectively addressed through graph theory. However, when applied to these tasks, LLMs often encounter challenges, such as hallucinations and mathematical inaccuracies. To overcome these limitations, we propose Graph-Grounded LLMs, a system that improves LLM performance on graph-related tasks by integrating a graph library through function calls. By grounding LLMs in this manner, we demonstrate significant reductions in hallucinations and improved mathematical accuracy in solving graph-based problems, as evidenced by the performance on the NLGraph benchmark. Finally, we showcase a disaster rescue application where the Graph-Grounded LLM acts as a decision-support system.


Delayed-Decision Motion Planning in the Presence of Multiple Predictions

arXiv.org Artificial Intelligence

-- Reliable automated driving technology is challenged by various sources of uncertainties, in particular, behavioral uncertainties of traffic agents. It is common for traffic agents to have intentions that are unknown to others, leaving an automated driving car to reason over multiple possible behaviors. This paper formalizes a behavior planning scheme in the presence of multiple possible futures with corresponding probabilities. We present a maximum entropy formulation and show how, under certain assumptions, this allows delayed decision-making to improve safety. The general formulation is then turned into a model predictive control formulation, which is solved as a quadratic program or a set of quadratic programs. We discuss implementation details for improving computation and verify operation in simulation and on a mobile robot. Prediction technology continues to advance, and multiple prediction outputs are now a staple of state-of-the-art prediction methods [1]-[6]. This paper examines how an autonomous driving (AD) agent can utilize multiple predictions in the behavior planning process. In the context of this work, behavior planning corresponds to the combined task of decision-making and trajectory planning. Consider the scenario depicted in Figure 1. A pedestrian walks along a road and will likely continue straight (with 80% probability), but the pedestrian is positioned close to the street, indicating that they might turn to cross the street (with 20% probability). Selecting the most probable sequence of events results in an overly aggressive and risky behavior - we assume they will not cross and are wrong 20% of the time.


End-to-End Predictive Planner for Autonomous Driving with Consistency Models

arXiv.org Artificial Intelligence

Trajectory prediction and planning are fundamental components for autonomous vehicles to navigate safely and efficiently in dynamic environments. Traditionally, these components have often been treated as separate modules, limiting the ability to perform interactive planning and leading to computational inefficiency in multi-agent scenarios. In this paper, we present a novel unified and data-driven framework that integrates prediction and planning with a single consistency model. Trained on real-world human driving datasets, our consistency model generates samples from high-dimensional, multimodal joint trajectory distributions of the ego and multiple surrounding agents, enabling end-to-end predictive planning. It effectively produces interactive behaviors, such as proactive nudging and yielding to ensure both safe and efficient interactions with other road users. To incorporate additional planning constraints on the ego vehicle, we propose an alternating direction method for multi-objective guidance in online guided sampling. Compared to diffusion models, our consistency model achieves better performance with fewer sampling steps, making it more suitable for real-time deployment. Experimental results on Waymo Open Motion Dataset (WOMD) demonstrate our method's superiority in trajectory quality, constraint satisfaction, and interactive behavior compared to various existing approaches.


Generalized Mission Planning for Heterogeneous Multi-Robot Teams via LLM-constructed Hierarchical Trees

arXiv.org Artificial Intelligence

We present a novel mission-planning strategy for heterogeneous multi-robot teams, taking into account the specific constraints and capabilities of each robot. Our approach employs hierarchical trees to systematically break down complex missions into manageable sub-tasks. We develop specialized APIs and tools, which are utilized by Large Language Models (LLMs) to efficiently construct these hierarchical trees. Once the hierarchical tree is generated, it is further decomposed to create optimized schedules for each robot, ensuring adherence to their individual constraints and capabilities. We demonstrate the effectiveness of our framework through detailed examples covering a wide range of missions, showcasing its flexibility and scalability.


Adaptive Prediction Ensemble: Improving Out-of-Distribution Generalization of Motion Forecasting

arXiv.org Artificial Intelligence

Deep learning-based trajectory prediction models for autonomous driving often struggle with generalization to out-of-distribution (OOD) scenarios, sometimes performing worse than simple rule-based models. To address this limitation, we propose a novel framework, Adaptive Prediction Ensemble (APE), which integrates deep learning and rule-based prediction experts. A learned routing function, trained concurrently with the deep learning model, dynamically selects the most reliable prediction based on the input scenario. Our experiments on large-scale datasets, including Waymo Open Motion Dataset (WOMD) and Argoverse, demonstrate improvement in zero-shot generalization across datasets. We show that our method outperforms individual prediction models and other variants, particularly in long-horizon prediction and scenarios with a high proportion of OOD data. This work highlights the potential of hybrid approaches for robust and generalizable motion prediction in autonomous driving.


Towards Scalable & Efficient Interaction-Aware Planning in Autonomous Vehicles using Knowledge Distillation

arXiv.org Artificial Intelligence

Real-world driving involves intricate interactions among vehicles navigating through dense traffic scenarios. Recent research focuses on enhancing the interaction awareness of autonomous vehicles to leverage these interactions in decision-making. These interaction-aware planners rely on neural-network-based prediction models to capture inter-vehicle interactions, aiming to integrate these predictions with traditional control techniques such as Model Predictive Control. However, this integration of deep learning-based models with traditional control paradigms often results in computationally demanding optimization problems, relying on heuristic methods. This study introduces a principled and efficient method for combining deep learning with constrained optimization, employing knowledge distillation to train smaller and more efficient networks, thereby mitigating complexity. We demonstrate that these refined networks maintain the problem-solving efficacy of larger models while significantly accelerating optimization. Specifically, in the domain of interaction-aware trajectory planning for autonomous vehicles, we illustrate that training a smaller prediction network using knowledge distillation speeds up optimization without sacrificing accuracy.


Efficient and Interaction-Aware Trajectory Planning for Autonomous Vehicles with Particle Swarm Optimization

arXiv.org Artificial Intelligence

Abstract-- This paper introduces a novel numerical approach to achieving smooth lane-change trajectories in autonomous driving scenarios. The generation of smooth and dynamically feasible trajectories for the lane change maneuver is facilitated by combining polynomial curve fitting with particle propagation, which can account for vehicle dynamics. The proposed planning algorithm is capable of determining feasible trajectories with real-time computation capability. The simulation results validate the efficacy and effectiveness of our proposed approach. One example of this is Neural I. INTRODUCTION Network Model Predictive Control (NNMPC) [11,12], which We consider motion planning for autonomous vehicles in attempts to solve merging in dense traffic by combining highly dense traffic scenarios, as depicted in Figure 1.


Multi-Profile Quadratic Programming (MPQP) for Optimal Gap Selection and Speed Planning of Autonomous Driving

arXiv.org Artificial Intelligence

Smooth and safe speed planning is imperative for the successful deployment of autonomous vehicles. This paper presents a mathematical formulation for the optimal speed planning of autonomous driving, which has been validated in high-fidelity simulations and real-road demonstrations with practical constraints. The algorithm explores the inter-traffic gaps in the time and space domain using a breadth-first search. For each gap, quadratic programming finds an optimal speed profile, synchronizing the time and space pair along with dynamic obstacles. Qualitative and quantitative analysis in Carla is reported to discuss the smoothness and robustness of the proposed algorithm. Finally, we present a road demonstration result for urban city driving.


Interactive Autonomous Navigation with Internal State Inference and Interactivity Estimation

arXiv.org Artificial Intelligence

Deep reinforcement learning (DRL) provides a promising way for intelligent agents (e.g., autonomous vehicles) to learn to navigate complex scenarios. However, DRL with neural networks as function approximators is typically considered a black box with little explainability and often suffers from suboptimal performance, especially for autonomous navigation in highly interactive multi-agent environments. To address these issues, we propose three auxiliary tasks with spatio-temporal relational reasoning and integrate them into the standard DRL framework, which improves the decision making performance and provides explainable intermediate indicators. We propose to explicitly infer the internal states (i.e., traits and intentions) of surrounding agents (e.g., human drivers) as well as to predict their future trajectories in the situations with and without the ego agent through counterfactual reasoning. These auxiliary tasks provide additional supervision signals to infer the behavior patterns of other interactive agents. Multiple variants of framework integration strategies are compared. We also employ a spatio-temporal graph neural network to encode relations between dynamic entities, which enhances both internal state inference and decision making of the ego agent. Moreover, we propose an interactivity estimation mechanism based on the difference between predicted trajectories in these two situations, which indicates the degree of influence of the ego agent on other agents. To validate the proposed method, we design an intersection driving simulator based on the Intelligent Intersection Driver Model (IIDM) that simulates vehicles and pedestrians. Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics and provides explainable intermediate indicators (i.e., internal states, and interactivity scores) for decision making.


Active Uncertainty Reduction for Safe and Efficient Interaction Planning: A Shielding-Aware Dual Control Approach

arXiv.org Artificial Intelligence

The ability to accurately predict others' behavior is central to the safety and efficiency of interactive robotics. Unfortunately, robots often lack access to key information on which these predictions may hinge, such as other agents' goals, attention, and willingness to cooperate. Dual control theory addresses this challenge by treating unknown parameters of a predictive model as stochastic hidden states and inferring their values at runtime using information gathered during system operation. While able to optimally and automatically trade off exploration and exploitation, dual control is computationally intractable for general interactive motion planning. In this paper, we present a novel algorithmic approach to enable active uncertainty reduction for interactive motion planning based on the implicit dual control paradigm. Our approach relies on sampling-based approximation of stochastic dynamic programming, leading to a model predictive control problem that can be readily solved by real-time gradient-based optimization methods. The resulting policy is shown to preserve the dual control effect for a broad class of predictive models with both continuous and categorical uncertainty. To ensure the safe operation of the interacting agents, we use a runtime safety filter (also referred to as a "shielding" scheme), which overrides the robot's dual control policy with a safety fallback strategy when a safety-critical event is imminent. We then augment the dual control framework with an improved variant of the recently proposed shielding-aware robust planning scheme, which proactively balances the nominal planning performance with the risk of high-cost emergency maneuvers triggered by low-probability agent behaviors. We demonstrate the efficacy of our approach with both simulated driving studies and hardware experiments using 1/10 scale autonomous vehicles.