Goto

Collaborating Authors

 Iosifidis, Vasileios


Parity-based Cumulative Fairness-aware Boosting

arXiv.org Artificial Intelligence

Data-driven AI systems can lead to discrimination on the basis of protected attributes like gender or race. One reason for this behavior is the encoded societal biases in the training data (e.g., females are underrepresented), which is aggravated in the presence of unbalanced class distributions (e.g., "granted" is the minority class). State-of-the-art fairness-aware machine learning approaches focus on preserving the \emph{overall} classification accuracy while improving fairness. In the presence of class-imbalance, such methods may further aggravate the problem of discrimination by denying an already underrepresented group (e.g., \textit{females}) the fundamental rights of equal social privileges (e.g., equal credit opportunity). To this end, we propose AdaFair, a fairness-aware boosting ensemble that changes the data distribution at each round, taking into account not only the class errors but also the fairness-related performance of the model defined cumulatively based on the partial ensemble. Except for the in-training boosting of the group discriminated over each round, AdaFair directly tackles imbalance during the post-training phase by optimizing the number of ensemble learners for balanced error performance (BER). AdaFair can facilitate different parity-based fairness notions and mitigate effectively discriminatory outcomes. Our experiments show that our approach can achieve parity in terms of statistical parity, equal opportunity, and disparate mistreatment while maintaining good predictive performance for all classes.


Online Fairness-Aware Learning with Imbalanced Data Streams

arXiv.org Artificial Intelligence

Data-driven learning algorithms are employed in many online applications, in which data become available over time, like network monitoring, stock price prediction, job applications, etc. The underlying data distribution might evolve over time calling for model adaptation as new instances arrive and old instances become obsolete. In such dynamic environments, the so-called data streams, fairness-aware learning cannot be considered as a one-off requirement, but rather it should comprise a continual requirement over the stream. Recent fairness-aware stream classifiers ignore the problem of class imbalance, which manifests in many real-life applications, and mitigate discrimination mainly because they "reject" minority instances at large due to their inability to effectively learn all classes. In this work, we propose \ours, an online fairness-aware approach that maintains a valid and fair classifier over the stream. \ours~is an online boosting approach that changes the training distribution in an online fashion by monitoring stream's class imbalance and tweaks its decision boundary to mitigate discriminatory outcomes over the stream. Experiments on 8 real-world and 1 synthetic datasets from different domains with varying class imbalance demonstrate the superiority of our method over state-of-the-art fairness-aware stream approaches with a range (relative) increase [11.2\%-14.2\%] in balanced accuracy, [22.6\%-31.8\%] in gmean, [42.5\%-49.6\%] in recall, [14.3\%-25.7\%] in kappa and [89.4\%-96.6\%] in statistical parity (fairness).


LSTM Based Sentiment Analysis for Cryptocurrency Prediction

arXiv.org Artificial Intelligence

Recent studies in big data analytics and natural language processing develop automatic techniques in analyzing sentiment in the social media information. In addition, the growing user base of social media and the high volume of posts also provide valuable sentiment information to predict the price fluctuation of the cryptocurrency. This research is directed to predicting the volatile price movement of cryptocurrency by analyzing the sentiment in social media and finding the correlation between them. While previous work has been developed to analyze sentiment in English social media posts, we propose a method to identify the sentiment of the Chinese social media posts from the most popular Chinese social media platform Sina-Weibo. We develop the pipeline to capture Weibo posts, describe the creation of the crypto-specific sentiment dictionary, and propose a long short-term memory (LSTM) based recurrent neural network along with the historical cryptocurrency price movement to predict the price trend for future time frames. The conducted experiments demonstrate the proposed approach outperforms the state of the art auto regressive based model by 18.5% in precision and 15.4% in recall.


A Data-driven Human Responsibility Management System

arXiv.org Artificial Intelligence

An ideal safe workplace is described as a place where staffs fulfill responsibilities in a well-organized order, potential hazardous events are being monitored in real-time, as well as the number of accidents and relevant damages are minimized. However, occupational-related death and injury are still increasing and have been highly attended in the last decades due to the lack of comprehensive safety management. A smart safety management system is therefore urgently needed, in which the staffs are instructed to fulfill responsibilities as well as automating risk evaluations and alerting staffs and departments when needed. In this paper, a smart system for safety management in the workplace based on responsibility big data analysis and the internet of things (IoT) are proposed. The real world implementation and assessment demonstrate that the proposed systems have superior accountability performance and improve the responsibility fulfillment through real-time supervision and self-reminder.


AdaFair: Cumulative Fairness Adaptive Boosting

arXiv.org Machine Learning

The widespread use of ML-based decision making in domains with high societal impact such as recidivism, job hiring and loan credit has raised a lot of concerns regarding potential discrimination. In particular, in certain cases it has been observed that ML algorithms can provide different decisions based on sensitive attributes such as gender or race and therefore can lead to discrimination. Although, several fairness-aware ML approaches have been proposed, their focus has been largely on preserving the overall classification accuracy while improving fairness in predictions for both protected and non-protected groups (defined based on the sensitive attribute(s)). The overall accuracy however is not a good indicator of performance in case of class imbalance, as it is biased towards the majority class. As we will see in our experiments, many of the fairness-related datasets suffer from class imbalance and therefore, tackling fairness requires also tackling the imbalance problem. To this end, we propose AdaFair, a fairness-aware classifier based on AdaBoost that further updates the weights of the instances in each boosting round taking into account a cumulative notion of fairness based upon all current ensemble members, while explicitly tackling class-imbalance by optimizing the number of ensemble members for balanced classification error. Our experiments show that our approach can achieve parity in true positive and true negative rates for both protected and non-protected groups, while it significantly outperforms existing fairness-aware methods up to 25% in terms of balanced error.


Fairness-enhancing interventions in stream classification

arXiv.org Artificial Intelligence

The wide spread usage of automated data-driven decision support systems has raised a lot of concerns regarding accountability and fairness of the employed models in the absence of human supervision. Existing fairness-aware approaches tackle fairness as a batch learning problem and aim at learning a fair model which can then be applied to future instances of the problem. In many applications, however, the data comes sequentially and its characteristics might evolve with time. In such a setting, it is counter-intuitive to "fix" a (fair) model over the data stream as changes in the data might incur changes in the underlying model therefore, affecting its fairness. In this work, we propose fairness-enhancing interventions that modify the input data so that the outcome of any stream classifier applied to that data will be fair. Experiments on real and synthetic data show that our approach achieves good predictive performance and low discrimination scores over the course of the stream.


Time-Aware and Corpus-Specific Entity Relatedness

arXiv.org Machine Learning

Entity relatedness has emerged as an important feature in a plethora of applications such as information retrieval, entity recommendation and entity linking. Given an entity, for instance a person or an organization, entity relatedness measures can be exploited for generating a list of highly-related entities. However, the relation of an entity to some other entity depends on several factors, with time and context being two of the most important ones (where, in our case, context is determined by a particular corpus). For example, the entities related to the International Monetary Fund are different now compared to some years ago, while these entities also may highly differ in the context of a USA news portal compared to a Greek news portal. In this paper, we propose a simple but flexible model for entity relatedness which considers time and entity aware word embeddings by exploiting the underlying corpus. The proposed model does not require external knowledge and is language independent, which makes it widely useful in a variety of applications.