Goto

Collaborating Authors

 Iosifidis, Alexandros


Continual Low-Rank Scaled Dot-product Attention

arXiv.org Artificial Intelligence

Transformers are widely used for their ability to capture data relations in sequence processing, with great success for a wide range of static tasks. However, the computational and memory footprint of their main component, i.e., the Scaled Dot-product Attention, is commonly overlooked. This makes their adoption in applications involving stream data processing with constraints in response latency, computational and memory resources infeasible. Some works have proposed methods to lower the computational cost of transformers, i.e. low-rank approximations, sparsity in attention, and efficient formulations for Continual Inference. In this paper, we introduce a new formulation of the Scaled Dot-product Attention based on the Nystr\"om approximation that is suitable for Continual Inference. In experiments on Online Audio Classification and Online Action Detection tasks, the proposed Continual Scaled Dot-product Attention can lower the number of operations by up to three orders of magnitude compared to the original Transformers while retaining the predictive performance of competing models.


MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild

arXiv.org Artificial Intelligence

Dynamic Facial Expression Recognition (DFER) has received significant interest in the recent years dictated by its pivotal role in enabling empathic and human-compatible technologies. Achieving robustness towards in-the-wild data in DFER is particularly important for real-world applications. One of the directions aimed at improving such models is multimodal emotion recognition based on audio and video data. Multimodal learning in DFER increases the model capabilities by leveraging richer, complementary data representations. Within the field of multimodal DFER, recent methods have focused on exploiting advances of self-supervised learning (SSL) for pre-training of strong multimodal encoders. Another line of research has focused on adapting pre-trained static models for DFER. In this work, we propose a different perspective on the problem and investigate the advancement of multimodal DFER performance by adapting SSL-pre-trained disjoint unimodal encoders. We identify main challenges associated with this task, namely, intra-modality adaptation, cross-modal alignment, and temporal adaptation, and propose solutions to each of them. As a result, we demonstrate improvement over current state-of-the-art on two popular DFER benchmarks, namely DFEW and MFAW.


Geometric Deep Learning for Computer-Aided Design: A Survey

arXiv.org Artificial Intelligence

Geometric Deep Learning techniques have become a transformative force in the field of Computer-Aided Design (CAD), and have the potential to revolutionize how designers and engineers approach and enhance the design process. By harnessing the power of machine learning-based methods, CAD designers can optimize their workflows, save time and effort while making better informed decisions, and create designs that are both innovative and practical. The ability to process the CAD designs represented by geometric data and to analyze their encoded features enables the identification of similarities among diverse CAD models, the proposition of alternative designs and enhancements, and even the generation of novel design alternatives. This survey offers a comprehensive overview of learning-based methods in computer-aided design across various categories, including similarity analysis and retrieval, 2D and 3D CAD model synthesis, and CAD generation from point clouds. Additionally, it provides a complete list of benchmark datasets and their characteristics, along with open-source codes that have propelled research in this domain. The final discussion delves into the challenges prevalent in this field, followed by potential future research directions in this rapidly evolving field.


Dynamic Semantic Compression for CNN Inference in Multi-access Edge Computing: A Graph Reinforcement Learning-based Autoencoder

arXiv.org Artificial Intelligence

This paper studies the computational offloading of CNN inference in dynamic multi-access edge computing (MEC) networks. To address the uncertainties in communication time and computation resource availability, we propose a novel semantic compression method, autoencoder-based CNN architecture (AECNN), for effective semantic extraction and compression in partial offloading. In the semantic encoder, we introduce a feature compression module based on the channel attention mechanism in CNNs, to compress intermediate data by selecting the most informative features. In the semantic decoder, we design a lightweight decoder to reconstruct the intermediate data through learning from the received compressed data to improve accuracy. To effectively trade-off communication, computation, and inference accuracy, we design a reward function and formulate the offloading problem of CNN inference as a maximization problem with the goal of maximizing the average inference accuracy and throughput over the long term. To address this maximization problem, we propose a graph reinforcement learning-based AECNN (GRL-AECNN) method, which outperforms existing works DROO-AECNN, GRL-BottleNet++ and GRL-DeepJSCC under different dynamic scenarios. This highlights the advantages of GRL-AECNN in offloading decision-making in dynamic MEC.


Improving Unimodal Inference with Multimodal Transformers

arXiv.org Artificial Intelligence

This paper proposes an approach for improving performance of unimodal models with multimodal training. Our approach involves a multi-branch architecture that incorporates unimodal models with a multimodal transformer-based branch. By co-training these branches, the stronger multimodal branch can transfer its knowledge to the weaker unimodal branches through a multi-task objective, thereby improving the performance of the resulting unimodal models. We evaluate our approach on tasks of dynamic hand gesture recognition based on RGB and Depth, audiovisual emotion recognition based on speech and facial video, and audio-video-text based sentiment analysis. Our approach outperforms the conventionally trained unimodal counterparts. Interestingly, we also observe that optimization of the unimodal branches improves the multimodal branch, compared to a similar multimodal model trained from scratch.


Variational Inference for GARCH-family Models

arXiv.org Machine Learning

The Bayesian estimation of GARCH-family models has been typically addressed through Monte Carlo sampling. Variational Inference is gaining popularity and attention as a robust approach for Bayesian inference in complex machine learning models; however, its adoption in econometrics and finance is limited. This paper discusses the extent to which Variational Inference constitutes a reliable and feasible alternative to Monte Carlo sampling for Bayesian inference in GARCH-like models. Through a large-scale experiment involving the constituents of the S&P 500 index, several Variational Inference optimizers, a variety of volatility models, and a case study, we show that Variational Inference is an attractive, remarkably well-calibrated, and competitive method for Bayesian learning.


Cryptocurrency Portfolio Optimization by Neural Networks

arXiv.org Artificial Intelligence

Many cryptocurrency brokers nowadays offer a variety of derivative assets that allow traders to perform hedging or speculation. This paper proposes an effective algorithm based on neural networks to take advantage of these investment products. The proposed algorithm constructs a portfolio that contains a pair of negatively correlated assets. A deep neural network, which outputs the allocation weight of each asset at a time interval, is trained to maximize the Sharpe ratio. A novel loss term is proposed to regulate the network's bias towards a specific asset, thus enforcing the network to learn an allocation strategy that is close to a minimum variance strategy. Extensive experiments were conducted using data collected from Binance spanning 19 months to evaluate the effectiveness of our approach. The backtest results show that the proposed algorithm can produce neural networks that are able to make profits in different market situations.


Convolutional autoencoder-based multimodal one-class classification

arXiv.org Artificial Intelligence

One-class classification refers to approaches of learning using data from a single class only. In this paper, we propose a deep learning one-class classification method suitable for multimodal data, which relies on two convolutional autoencoders jointly trained to reconstruct the positive input data while obtaining the data representations in the latent space as compact as possible. During inference, the distance of the latent representation of an input to the origin can be used as an anomaly score. Experimental results using a multimodal macroinvertebrate image classification dataset show that the proposed multimodal method yields better results as compared to the unimodal approach. Furthermore, study the effect of different input image sizes, and we investigate how recently proposed feature diversity regularizers affect the performance of our approach. We show that such regularizers improve performance.


Exact Manifold Gaussian Variational Bayes

arXiv.org Artificial Intelligence

We propose an optimization algorithm for Variational Inference (VI) in complex models. Our approach relies on natural gradient updates where the variational space is a Riemann manifold. We develop an efficient algorithm for Gaussian Variational Inference that implicitly satisfies the positive definite constraint on the variational covariance matrix. Our Exact manifold Gaussian Variational Bayes (EMGVB) provides exact but simple update rules and is straightforward to implement. Due to its black-box nature, EMGVB stands as a ready-to-use solution for VI in complex models. Over five datasets, we empirically validate our feasible approach on different statistical, econometric, and deep learning models, discussing its performance with respect to baseline methods.


Curiosity-Driven Reinforcement Learning based Low-Level Flight Control

arXiv.org Artificial Intelligence

Curiosity is one of the main motives in many of the natural creatures with measurable levels of intelligence for exploration and, as a result, more efficient learning. It makes it possible for humans and many animals to explore efficiently by searching for being in states that make them surprised with the goal of learning more about what they do not know. As a result, while being curious, they learn better. In the machine learning literature, curiosity is mostly combined with reinforcement learning-based algorithms as an intrinsic reward. This work proposes an algorithm based on the drive of curiosity for autonomous learning to control by generating proper motor speeds from odometry data. The quadcopter controlled by our proposed algorithm can pass through obstacles while controlling the Yaw direction of the quad-copter toward the desired location. To achieve that, we also propose a new curiosity approach based on prediction error. We ran tests using on-policy, off-policy, on-policy plus curiosity, and the proposed algorithm and visualized the effect of curiosity in evolving exploration patterns. Results show the capability of the proposed algorithm to learn optimal policy and maximize reward where other algorithms fail to do so.