Inoue, Go
Arabic Diacritics in the Wild: Exploiting Opportunities for Improved Diacritization
Elgamal, Salman, Obeid, Ossama, Kabbani, Tameem, Inoue, Go, Habash, Nizar
The widespread absence of diacritical marks in Arabic text poses a significant challenge for Arabic natural language processing (NLP). This paper explores instances of naturally occurring diacritics, referred to as "diacritics in the wild," to unveil patterns and latent information across six diverse genres: news articles, novels, children's books, poetry, political documents, and ChatGPT outputs. We present a new annotated dataset that maps real-world partially diacritized words to their maximal full diacritization in context. Additionally, we propose extensions to the analyze-and-disambiguate approach in Arabic NLP to leverage these diacritics, resulting in notable improvements. Our contributions encompass a thorough analysis, valuable datasets, and an extended diacritization algorithm. We release our code and datasets as open source.
Advancements in Arabic Grammatical Error Detection and Correction: An Empirical Investigation
Alhafni, Bashar, Inoue, Go, Khairallah, Christian, Habash, Nizar
Grammatical error correction (GEC) is a well-explored problem in English with many existing models and datasets. However, research on GEC in morphologically rich languages has been limited due to challenges such as data scarcity and language complexity. In this paper, we present the first results on Arabic GEC using two newly developed Transformer-based pretrained sequence-to-sequence models. We also define the task of multi-class Arabic grammatical error detection (GED) and present the first results on multi-class Arabic GED. We show that using GED information as an auxiliary input in GEC models improves GEC performance across three datasets spanning different genres. Moreover, we also investigate the use of contextual morphological preprocessing in aiding GEC systems. Our models achieve SOTA results on two Arabic GEC shared task datasets and establish a strong benchmark on a recently created dataset. We make our code, data, and pretrained models publicly available.
Camelira: An Arabic Multi-Dialect Morphological Disambiguator
Obeid, Ossama, Inoue, Go, Habash, Nizar
We present Camelira, a web-based Arabic multi-dialect morphological disambiguation tool that covers four major variants of Arabic: Modern Standard Arabic, Egyptian, Gulf, and Levantine. Camelira offers a user-friendly web interface that allows researchers and language learners to explore various linguistic information, such as part-of-speech, morphological features, and lemmas. Our system also provides an option to automatically choose an appropriate dialect-specific disambiguator based on the prediction of a dialect identification component. Camelira is publicly accessible at http://camelira.camel-lab.com.