Goto

Collaborating Authors

 Innes, Craig


Adaptive Splitting of Reusable Temporal Monitors for Rare Traffic Violations

arXiv.org Artificial Intelligence

Autonomous Vehicles (AVs) are often tested in simulation to estimate the probability they will violate safety specifications. Two common issues arise when using existing techniques to produce this estimation: If violations occur rarely, simple Monte-Carlo sampling techniques can fail to produce efficient estimates; if simulation horizons are too long, importance sampling techniques (which learn proposal distributions from past simulations) can fail to converge. This paper addresses both issues by interleaving rare-event sampling techniques with online specification monitoring algorithms. We use adaptive multi-level splitting to decompose simulations into partial trajectories, then calculate the distance of those partial trajectories to failure by leveraging robustness metrics from Signal Temporal Logic (STL). By caching those partial robustness metric values, we can efficiently re-use computations across multiple sampling stages. Our experiments on an interstate lane-change scenario show our method is viable for testing simulated AV-pipelines, efficiently estimating failure probabilities for STL specifications based on real traffic rules. We produce better estimates than Monte-Carlo and importance sampling in fewer simulations.


Dialogue-based generation of self-driving simulation scenarios using Large Language Models

arXiv.org Artificial Intelligence

Simulation is an invaluable tool for developing and evaluating controllers for self-driving cars. Current simulation frameworks are driven by highly-specialist domain specific languages, and so a natural language interface would greatly enhance usability. But there is often a gap, consisting of tacit assumptions the user is making, between a concise English utterance and the executable code that captures the user's intent. In this paper we describe a system that addresses this issue by supporting an extended multimodal interaction: the user can follow up prior instructions with refinements or revisions, in reaction to the simulations that have been generated from their utterances so far. We use Large Language Models (LLMs) to map the user's English utterances in this interaction into domain-specific code, and so we explore the extent to which LLMs capture the context sensitivity that's necessary for computing the speaker's intended message in discourse.


Learning rewards for robotic ultrasound scanning using probabilistic temporal ranking

arXiv.org Artificial Intelligence

Informative path-planning is a well established approach to visual-servoing and active viewpoint selection in robotics, but typically assumes that a suitable cost function or goal state is known. This work considers the inverse problem, where the goal of the task is unknown, and a reward function needs to be inferred from exploratory example demonstrations provided by a demonstrator, for use in a downstream informative path-planning policy. Unfortunately, many existing reward inference strategies are unsuited to this class of problems, due to the exploratory nature of the demonstrations. In this paper, we propose an alternative approach to cope with the class of problems where these sub-optimal, exploratory demonstrations occur. We hypothesise that, in tasks which require discovery, successive states of any demonstration are progressively more likely to be associated with a higher reward, and use this hypothesis to generate time-based binary comparison outcomes and infer reward functions that support these ranks, under a probabilistic generative model. We formalise this \emph{probabilistic temporal ranking} approach and show that it improves upon existing approaches to perform reward inference for autonomous ultrasound scanning, a novel application of learning from demonstration in medical imaging while also being of value across a broad range of goal-oriented learning from demonstration tasks. \keywords{Visual servoing \and reward inference \and probabilistic temporal ranking


Testing Rare Downstream Safety Violations via Upstream Adaptive Sampling of Perception Error Models

arXiv.org Artificial Intelligence

Testing black-box perceptual-control systems in simulation faces two difficulties. Firstly, perceptual inputs in simulation lack the fidelity of real-world sensor inputs. Secondly, for a reasonably accurate perception system, encountering a rare failure trajectory may require running infeasibly many simulations. This paper combines perception error models -- surrogates for a sensor-based detection system -- with state-dependent adaptive importance sampling. This allows us to efficiently assess the rare failure probabilities for real-world perceptual control systems within simulation. Our experiments with an autonomous braking system equipped with an RGB obstacle-detector show that our method can calculate accurate failure probabilities with an inexpensive number of simulations. Further, we show how choice of safety metric can influence the process of learning proposal distributions capable of reliably sampling high-probability failures.


Learning Factored Markov Decision Processes with Unawareness

arXiv.org Artificial Intelligence

Methods for learning and planning in sequential decision problems often assume the learner is aware of all possible states and actions in advance. This assumption is sometimes untenable. In this paper, we give a method to learn factored markov decision problems from both domain exploration and expert assistance, which guarantees convergence to near-optimal behaviour, even when the agent begins unaware of factors critical to success. Our experiments show our agent learns optimal behaviour on small and large problems, and that conserving information on discovering new possibilities results in faster convergence.