Goto

Collaborating Authors

 Injadat, MohammadNoor


A Deep Learning Approach Towards Student Performance Prediction in Online Courses: Challenges Based on a Global Perspective

arXiv.org Artificial Intelligence

Analyzing and evaluating students' progress in any learning environment is stressful and time consuming if done using traditional analysis methods. This is further exasperated by the increasing number of students due to the shift of focus toward integrating the Internet technologies in education and the focus of academic institutions on moving toward e-Learning, blended, or online learning models. As a result, the topic of student performance prediction has become a vibrant research area in recent years. To address this, machine learning and data mining techniques have emerged as a viable solution. To that end, this work proposes the use of deep learning techniques (CNN and RNN-LSTM) to predict the students' performance at the midpoint stage of the online course delivery using three distinct datasets collected from three different regions of the world. Experimental results show that deep learning models have promising performance as they outperform other optimized traditional ML models in two of the three considered datasets while also having comparable performance for the third dataset.


Optimized Ensemble Model Towards Secured Industrial IoT Devices

arXiv.org Artificial Intelligence

The continued growth in the deployment of Internet-of-Things (IoT) devices has been fueled by the increased connectivity demand, particularly in industrial environments. However, this has led to an increase in the number of network related attacks due to the increased number of potential attack surfaces. Industrial IoT (IIoT) devices are prone to various network related attacks that can have severe consequences on the manufacturing process as well as on the safety of the workers in the manufacturing plant. One promising solution that has emerged in recent years for attack detection is Machine learning (ML). More specifically, ensemble learning models have shown great promise in improving the performance of the underlying ML models. Accordingly, this paper proposes a framework based on the combined use of Bayesian Optimization-Gaussian Process (BO-GP) with an ensemble tree-based learning model to improve the performance of intrusion and attack detection in IIoT environments. The proposed framework's performance is evaluated using the Windows 10 dataset collected by the Cyber Range and IoT labs at University of New South Wales. Experimental results illustrate the improvement in detection accuracy, precision, and F-score when compared to standard tree and ensemble tree models.


Machine Learning Towards Intelligent Systems: Applications, Challenges, and Opportunities

arXiv.org Artificial Intelligence

The emergence and continued reliance on the Internet and related technologies has resulted in the generation of large amounts of data that can be made available for analyses. However, humans do not possess the cognitive capabilities to understand such large amounts of data. Machine learning (ML) provides a mechanism for humans to process large amounts of data, gain insights about the behavior of the data, and make more informed decision based on the resulting analysis. ML has applications in various fields. This review focuses on some of the fields and applications such as education, healthcare, network security, banking and finance, and social media. Within these fields, there are multiple unique challenges that exist. However, ML can provide solutions to these challenges, as well as create further research opportunities. Accordingly, this work surveys some of the challenges facing the aforementioned fields and presents some of the previous literature works that tackled them. Moreover, it suggests several research opportunities that benefit from the use of ML to address these challenges.


Bayesian Optimization with Machine Learning Algorithms Towards Anomaly Detection

arXiv.org Machine Learning

Network attacks have been very prevalent as their rate is growing tremendously. Both organization and individuals are now concerned about their confidentiality, integrity and availability of their critical information which are often impacted by network attacks. To that end, several previous machine learning-based intrusion detection methods have been developed to secure network infrastructure from such attacks. In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique to tune the parameters of Support Vector Machine with Gaussian Kernel (SVM-RBF), Random Forest (RF), and k-Nearest Neighbor (k-NN) algorithms. The performance of the considered algorithms is evaluated using the ISCX 2012 dataset. Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.


Data Mining with Big Data in Intrusion Detection Systems: A Systematic Literature Review

arXiv.org Artificial Intelligence

Cloud computing has become a powerful and indispensable technology for complex, high performance and scalable computation. The exponential expansion in the deployment of cloud technology has produced a massive amount of data from a variety of applications, resources and platforms. In turn, the rapid rate and volume of data creation has begun to pose significant challenges for data management and security. The design and deployment of intrusion detection systems (IDS) in the big data setting has, therefore, become a topic of importance. In this paper, we conduct a systematic literature review (SLR) of data mining techniques (DMT) used in IDS-based solutions through the period 2013-2018. We employed criterion-based, purposive sampling identifying 32 articles, which constitute the primary source of the present survey. After a careful investigation of these articles, we identified 17 separate DMTs deployed in an IDS context. This paper also presents the merits and disadvantages of the various works of current research that implemented DMTs and distributed streaming frameworks (DSF) to detect and/or prevent malicious attacks in a big data environment.