Goto

Collaborating Authors

 Indurthi, Satish


Ensemble-Based Deep Reinforcement Learning for Chatbots

arXiv.org Artificial Intelligence

Such an agent is typically characterised by: (i) a finite set of states 6 S {s i} that describe all possible situations in the environment; (ii) a finite set of actions A {a j} to change in the environment from one situation to another; (iii) a state transition function T (s,a,s null) that specifies the next state s null for having taken action a in the current state s; (iv) a reward function R (s,a,s null) that specifies a numerical value given to the agent for taking action a in state s and transitioning to state s null; and (v) a policy π: S A that defines a mapping from states to actions [2, 30]. The goal of a reinforcement learning agent is to find an optimal policy by maximising its cumulative discounted reward defined as Q (s,a) max π E[r t γr t 1 γ 2 r t 1 ... s t s,a t a,π ], where function Q represents the maximum sum of rewards r t discounted by factor γ at each time step. While a reinforcement learning agent takes actions with probability Pr ( a s) during training, it selects the best action at test time according to π (s) arg max a A Q (s,a). A deep reinforcement learning agent approximates Q using a multi-layer neural network [31]. The Q function is parameterised as Q(s,a; θ), where θ are the parameters or weights of the neural network (recurrent neural network in our case). Estimating these weights requires a dataset of learning experiences D {e 1,...e N} (also referred to as'experience replay memory'), where every experience is described as a tuple e t ( s t,a t,r t,s t 1). Inducing a Q function consists in applying Q-learning updates over minibatches of experience MB {( s,a,r,s null) U (D)} drawn uniformly at random from the full dataset D . This process is implemented in learning algorithms using Deep Q-Networks (DQN) such as those described in [31, 32, 33], and the following section describes a DQN-based algorithm for human-chatbot interaction.