Indiveri, Giacomo
NeuroBench: Advancing Neuromorphic Computing through Collaborative, Fair and Representative Benchmarking
Yik, Jason, Ahmed, Soikat Hasan, Ahmed, Zergham, Anderson, Brian, Andreou, Andreas G., Bartolozzi, Chiara, Basu, Arindam, Blanken, Douwe den, Bogdan, Petrut, Bohte, Sander, Bouhadjar, Younes, Buckley, Sonia, Cauwenberghs, Gert, Corradi, Federico, de Croon, Guido, Danielescu, Andreea, Daram, Anurag, Davies, Mike, Demirag, Yigit, Eshraghian, Jason, Forest, Jeremy, Furber, Steve, Furlong, Michael, Gilra, Aditya, Indiveri, Giacomo, Joshi, Siddharth, Karia, Vedant, Khacef, Lyes, Knight, James C., Kriener, Laura, Kubendran, Rajkumar, Kudithipudi, Dhireesha, Lenz, Gregor, Manohar, Rajit, Mayr, Christian, Michmizos, Konstantinos, Muir, Dylan, Neftci, Emre, Nowotny, Thomas, Ottati, Fabrizio, Ozcelikkale, Ayca, Pacik-Nelson, Noah, Panda, Priyadarshini, Pao-Sheng, Sun, Payvand, Melika, Pehle, Christian, Petrovici, Mihai A., Posch, Christoph, Renner, Alpha, Sandamirskaya, Yulia, Schaefer, Clemens JS, van Schaik, André, Schemmel, Johannes, Schuman, Catherine, Seo, Jae-sun, Sheik, Sadique, Shrestha, Sumit Bam, Sifalakis, Manolis, Sironi, Amos, Stewart, Kenneth, Stewart, Terrence C., Stratmann, Philipp, Tang, Guangzhi, Timcheck, Jonathan, Verhelst, Marian, Vineyard, Craig M., Vogginger, Bernhard, Yousefzadeh, Amirreza, Zhou, Biyan, Zohora, Fatima Tuz, Frenkel, Charlotte, Reddi, Vijay Janapa
The field of neuromorphic computing holds great promise in terms of advancing computing efficiency and capabilities by following brain-inspired principles. However, the rich diversity of techniques employed in neuromorphic research has resulted in a lack of clear standards for benchmarking, hindering effective evaluation of the advantages and strengths of neuromorphic methods compared to traditional deep-learning-based methods. This paper presents a collaborative effort, bringing together members from academia and the industry, to define benchmarks for neuromorphic computing: NeuroBench. The goals of NeuroBench are to be a collaborative, fair, and representative benchmark suite developed by the community, for the community. In this paper, we discuss the challenges associated with benchmarking neuromorphic solutions, and outline the key features of NeuroBench. We believe that NeuroBench will be a significant step towards defining standards that can unify the goals of neuromorphic computing and drive its technological progress. Please visit neurobench.ai for the latest updates on the benchmark tasks and metrics.
Long-term stable Electromyography classification using Canonical Correlation Analysis
Donati, Elisa, Benatti, Simone, Ceolini, Enea, Indiveri, Giacomo
Discrimination of hand gestures based on the decoding of surface electromyography (sEMG) signals is a well-establish approach for controlling prosthetic devices and for Human-Machine Interfaces (HMI). However, despite the promising results achieved by this approach in well-controlled experimental conditions, its deployment in long-term real-world application scenarios is still hindered by several challenges. One of the most critical challenges is maintaining high EMG data classification performance across multiple days without retraining the decoding system. The drop in performance is mostly due to the high EMG variability caused by electrodes shift, muscle artifacts, fatigue, user adaptation, or skin-electrode interfacing issues. Here we propose a novel statistical method based on canonical correlation analysis (CCA) that stabilizes EMG classification performance across multiple days for long-term control of prosthetic devices. We show how CCA can dramatically decrease the performance drop of standard classifiers observed across days, by maximizing the correlation among multiple-day acquisition data sets. Our results show how the performance of a classifier trained on EMG data acquired only of the first day of the experiment maintains 90% relative accuracy across multiple days, compensating for the EMG data variability that occurs over long-term periods, using the CCA transformation on data obtained from a small number of gestures. This approach eliminates the need for large data sets and multiple or periodic training sessions, which currently hamper the usability of conventional pattern recognition based approaches
Bottom-Up and Top-Down Neural Processing Systems Design: Neuromorphic Intelligence as the Convergence of Natural and Artificial Intelligence
Frenkel, Charlotte, Bol, David, Indiveri, Giacomo
While Moore's law has driven exponential computing power expectations, its nearing end calls for new avenues for improving the overall system performance. One of these avenues is the exploration of new alternative brain-inspired computing architectures that promise to achieve the flexibility and computational efficiency of biological neural processing systems. Within this context, neuromorphic intelligence represents a paradigm shift in computing based on the implementation of spiking neural network architectures tightly co-locating processing and memory. In this paper, we provide a comprehensive overview of the field, highlighting the different levels of granularity present in existing silicon implementations, comparing approaches that aim at replicating natural intelligence (bottom-up) versus those that aim at solving practical artificial intelligence applications (top-down), and assessing the benefits of the different circuit design styles used to achieve these goals. First, we present the analog, mixed-signal and digital circuit design styles, identifying the boundary between processing and memory through time multiplexing, in-memory computation and novel devices. Next, we highlight the key tradeoffs for each of the bottom-up and top-down approaches, survey their silicon implementations, and carry out detailed comparative analyses to extract design guidelines. Finally, we identify both necessary synergies and missing elements required to achieve a competitive advantage for neuromorphic edge computing over conventional machine-learning accelerators, and outline the key elements for a framework toward neuromorphic intelligence.
Online Detection of Vibration Anomalies Using Balanced Spiking Neural Networks
Dennler, Nik, Haessig, Germain, Cartiglia, Matteo, Indiveri, Giacomo
Vibration patterns yield valuable information about the health state of a running machine, which is commonly exploited in predictive maintenance tasks for large industrial systems. However, the overhead, in terms of size, complexity and power budget, required by classical methods to exploit this information is often prohibitive for smaller-scale applications such as autonomous cars, drones or robotics. Here we propose a neuromorphic approach to perform vibration analysis using spiking neural networks that can be applied to a wide range of scenarios. We present a spike-based end-to-end pipeline able to detect system anomalies from vibration data, using building blocks that are compatible with analog-digital neuromorphic circuits. This pipeline operates in an online unsupervised fashion, and relies on a cochlea model, on feedback adaptation and on a balanced spiking neural network. We show that the proposed method achieves state-of-the-art performance or better against two publicly available data sets. Further, we demonstrate a working proof-of-concept implemented on an asynchronous neuromorphic processor device. This work represents a significant step towards the design and implementation of autonomous low-power edge-computing devices for online vibration monitoring.
Learning in Deep Neural Networks Using a Biologically Inspired Optimizer
Dellaferrera, Giorgia, Wozniak, Stanislaw, Indiveri, Giacomo, Pantazi, Angeliki, Eleftheriou, Evangelos
Plasticity circuits in the brain are known to be influenced by the distribution of the synaptic weights through the mechanisms of synaptic integration and local regulation of synaptic strength. However, the complex interplay of stimulation-dependent plasticity with local learning signals is disregarded by most of the artificial neural network training algorithms devised so far. Here, we propose a novel biologically inspired optimizer for artificial (ANNs) and spiking neural networks (SNNs) that incorporates key principles of synaptic integration observed in dendrites of cortical neurons: GRAPES (Group Responsibility for Adjusting the Propagation of Error Signals). GRAPES implements a weight-distribution dependent modulation of the error signal at each node of the neural network. We show that this biologically inspired mechanism leads to a systematic improvement of the convergence rate of the network, and substantially improves classification accuracy of ANNs and SNNs with both feedforward and recurrent architectures. Furthermore, we demonstrate that GRAPES supports performance scalability for models of increasing complexity and mitigates catastrophic forgetting by enabling networks to generalize to unseen tasks based on previously acquired knowledge. The local characteristics of GRAPES minimize the required memory resources, making it optimally suited for dedicated hardware implementations. Overall, our work indicates that reconciling neurophysiology insights with machine intelligence is key to boosting the performance of neural networks.
Instantaneous Stereo Depth Estimation of Real-World Stimuli with a Neuromorphic Stereo-Vision Setup
Risi, Nicoletta, Calabrese, Enrico, Indiveri, Giacomo
The stereo-matching problem, i.e., matching corresponding features in two different views to reconstruct depth, is efficiently solved in biology. Yet, it remains the computational bottleneck for classical machine vision approaches. By exploiting the properties of event cameras, recently proposed Spiking Neural Network (SNN) architectures for stereo vision have the potential of simplifying the stereo-matching problem. Several solutions that combine event cameras with spike-based neuromorphic processors already exist. However, they are either simulated on digital hardware or tested on simplified stimuli. In this work, we use the Dynamic Vision Sensor 3D Human Pose Dataset (DHP19) to validate a brain-inspired event-based stereo-matching architecture implemented on a mixed-signal neuromorphic processor with real-world data. Our experiments show that this SNN architecture, composed of coincidence detectors and disparity sensitive neurons, is able to provide a coarse estimate of the input disparity instantaneously, thereby detecting the presence of a stimulus moving in depth in real-time.
Implementing efficient balanced networks with mixed-signal spike-based learning circuits
Büchel, Julian, Kakon, Jonathan, Perez, Michel, Indiveri, Giacomo
Efficient Balanced Networks (EBNs) are networks of spiking neurons in which excitatory and inhibitory synaptic currents are balanced on a short timescale, leading to desirable coding properties such as high encoding precision, low firing rates, and distributed information representation. It is for these benefits that it would be desirable to implement such networks in low-power neuromorphic processors. However, the degree of device mismatch in analog mixed-signal neuromorphic circuits renders the use of pre-trained EBNs challenging, if not impossible. To overcome this issue, we developed a novel local learning rule suitable for on-chip implementation that drives a randomly connected network of spiking neurons into a tightly balanced regime. Here we present the integrated circuits that implement this rule and demonstrate their expected behaviour in low-level circuit simulations. Our proposed method paves the way towards a system-level implementation of tightly balanced networks on analog mixed-signal neuromorphic hardware. Thanks to their coding properties and sparse activity, neuromorphic electronic EBNs will be ideally suited for extreme-edge computing applications that require low-latency, ultra-low power consumption and which cannot rely on cloud computing for data processing.
An electronic neuromorphic system for real-time detection of High Frequency Oscillations (HFOs) in intracranial EEG
Sharifhazileh, Mohammadali, Burelo, Karla, Sarnthein, Johannes, Indiveri, Giacomo
In this work, we present a neuromorphic system that combines for the first time a neural recording headstage with a signal-to-spike conversion circuit and a multi-core spiking neural network (SNN) architecture on the same die for recording, processing, and detecting High Frequency Oscillations (HFO), which are biomarkers for the epileptogenic zone. The device was fabricated using a standard 0.18$\mu$m CMOS technology node and has a total area of 99mm$^{2}$. We demonstrate its application to HFO detection in the iEEG recorded from 9 patients with temporal lobe epilepsy who subsequently underwent epilepsy surgery. The total average power consumption of the chip during the detection task was 614.3$\mu$W. We show how the neuromorphic system can reliably detect HFOs: the system predicts postsurgical seizure outcome with state-of-the-art accuracy, specificity and sensitivity (78%, 100%, and 33% respectively). This is the first feasibility study towards identifying relevant features in intracranial human data in real-time, on-chip, using event-based processors and spiking neural networks. By providing "neuromorphic intelligence" to neural recording circuits the approach proposed will pave the way for the development of systems that can detect HFO areas directly in the operation room and improve the seizure outcome of epilepsy surgery.
Recurrent networks of coupled Winner-Take-All oscillators for solving constraint satisfaction problems
Mostafa, Hesham, Mueller, Lorenz. K., Indiveri, Giacomo
We present a recurrent neuronal network, modeled as a continuous-time dynamical system, that can solve constraint satisfaction problems. Discrete variables are represented by coupled Winner-Take-All (WTA) networks, and their values are encoded in localized patterns of oscillations that are learned by the recurrent weights in these networks. Constraints over the variables are encoded in the network connectivity. Although there are no sources of noise, the network can escape from local optima in its search for solutions that satisfy all constraints by modifying the effective network connectivity through oscillations. If there is no solution that satisfies all constraints, the network state changes in a pseudo-random manner and its trajectory approximates a sampling procedure that selects a variable assignment with a probability that increases with the fraction of constraints satisfied by this assignment.
Recurrent networks of coupled Winner-Take-All oscillators for solving constraint satisfaction problems
Mostafa, Hesham, Mueller, Lorenz. K., Indiveri, Giacomo
We present a recurrent neuronal network, modeled as a continuous-time dynamical system, that can solve constraint satisfaction problems. Discrete variables are represented by coupled Winner-Take-All (WTA) networks, and their values are encoded in localized patterns of oscillations that are learned by the recurrent weights in these networks. Constraints over the variables are encoded in the network connectivity. Although there are no sources of noise, the network can escape from local optima in its search for solutions that satisfy all constraints by modifying the effective network connectivity through oscillations. If there is no solution that satisfies all constraints, the network state changes in a pseudo-random manner and its trajectory approximates a sampling procedure that selects a variable assignment with a probability that increases with the fraction of constraints satisfied by this assignment. External evidence, or input to the network, can force variables to specific values. When new inputs are applied, the network re-evaluates the entire set of variables in its search for the states that satisfy the maximum number of constraints, while being consistent with the external input. Our results demonstrate that the proposed network architecture can perform a deterministic search for the optimal solution to problems with non-convex cost functions. The network is inspired by canonical microcircuit models of the cortex and suggests possible dynamical mechanisms to solve constraint satisfaction problems that can be present in biological networks, or implemented in neuromorphic electronic circuits.