Recurrent networks of coupled Winner-Take-All oscillators for solving constraint satisfaction problems

Mostafa, Hesham, Mueller, Lorenz. K., Indiveri, Giacomo

Neural Information Processing Systems 

We present a recurrent neuronal network, modeled as a continuous-time dynamical system, that can solve constraint satisfaction problems. Discrete variables are represented by coupled Winner-Take-All (WTA) networks, and their values are encoded in localized patterns of oscillations that are learned by the recurrent weights in these networks. Constraints over the variables are encoded in the network connectivity. Although there are no sources of noise, the network can escape from local optima in its search for solutions that satisfy all constraints by modifying the effective network connectivity through oscillations. If there is no solution that satisfies all constraints, the network state changes in a pseudo-random manner and its trajectory approximates a sampling procedure that selects a variable assignment with a probability that increases with the fraction of constraints satisfied by this assignment.