Imrie, Calum
Safe Reinforcement Learning in Black-Box Environments via Adaptive Shielding
Bethell, Daniel, Gerasimou, Simos, Calinescu, Radu, Imrie, Calum
Empowering safe exploration of reinforcement learning (RL) agents during training is a critical impediment towards deploying RL agents in many real-world scenarios. Training RL agents in unknown, black-box environments poses an even greater safety risk when prior knowledge of the domain/task is unavailable. We introduce ADVICE (Adaptive Shielding with a Contrastive Autoencoder), a novel post-shielding technique that distinguishes safe and unsafe features of state-action pairs during training, thus protecting the RL agent from executing actions that yield potentially hazardous outcomes. Our comprehensive experimental evaluation against state-of-the-art safe RL exploration techniques demonstrates how ADVICE can significantly reduce safety violations during training while maintaining a competitive outcome reward.
Bayesian Learning for the Robust Verification of Autonomous Robots
Zhao, Xingyu, Gerasimou, Simos, Calinescu, Radu, Imrie, Calum, Robu, Valentin, Flynn, David
Autonomous robots used in infrastructure inspection, space exploration and other critical missions operate in highly dynamic environments. As such, they must continually verify their ability to complete the tasks associated with these missions safely and effectively. Here we present a Bayesian learning framework that enables this runtime verification of autonomous robots. The framework uses prior knowledge and observations of the verified robot to learn expected ranges for the occurrence rates of regular and singular (e.g., catastrophic failure) events. Interval continuous-time Markov models defined using these ranges are then analysed to obtain expected intervals of variation for system properties such as mission duration and success probability. We apply the framework to an autonomous robotic mission for underwater infrastructure inspection and repair. The formal proofs and experiments presented in the paper show that our framework produces results that reflect the uncertainty intrinsic to many real-world systems, enabling the robust verification of their quantitative properties under parametric uncertainty.
Discrete-Event Controller Synthesis for Autonomous Systems with Deep-Learning Perception Components
Calinescu, Radu, Imrie, Calum, Mangal, Ravi, Rodrigues, Genaรญna Nunes, Pฤsฤreanu, Corina, Santana, Misael Alpizar, Vรกzquez, Gricel
We present DeepDECS, a new method for the synthesis of correct-by-construction discrete-event controllers for autonomous systems that use deep neural network (DNN) classifiers for the perception step of their decision-making processes. Despite major advances in deep learning in recent years, providing safety guarantees for these systems remains very challenging. Our controller synthesis method addresses this challenge by integrating DNN verification with the synthesis of verified Markov models. The synthesised models correspond to discrete-event controllers guaranteed to satisfy the safety, dependability and performance requirements of the autonomous system, and to be Pareto optimal with respect to a set of optimisation objectives. We use the method in simulation to synthesise controllers for mobile-robot collision mitigation and for maintaining driver attentiveness in shared-control autonomous driving.
Closed-loop Analysis of Vision-based Autonomous Systems: A Case Study
Pasareanu, Corina S., Mangal, Ravi, Gopinath, Divya, Yaman, Sinem Getir, Imrie, Calum, Calinescu, Radu, Yu, Huafeng
Deep neural networks (DNNs) are increasingly used in safety-critical autonomous systems as perception components processing high-dimensional image data. Formal analysis of these systems is particularly challenging due to the complexity of the perception DNNs, the sensors (cameras), and the environment conditions. We present a case study applying formal probabilistic analysis techniques to an experimental autonomous system that guides airplanes on taxiways using a perception DNN. We address the above challenges by replacing the camera and the network with a compact probabilistic abstraction built from the confusion matrices computed for the DNN on a representative image data set. We also show how to leverage local, DNN-specific analyses as run-time guards to increase the safety of the overall system. Our findings are applicable to other autonomous systems that use complex DNNs for perception.