Goto

Collaborating Authors

 Iiyama, Yutaro


Fast convolutional neural networks on FPGAs with hls4ml

arXiv.org Machine Learning

The hls4ml library [1, 2] is an open source software designed to facilitate the deployment of machine learning (ML) models on field-programmable gate arrays (FPGAs), targeting low-latency and low-power edge applications. Taking as input a neural network model, hls4ml generates C/C code designed to be transpiled into FPGA firmware by processing it with a high-level synthesis (HLS) library. The development of hls4ml was historically driven by the need to integrate ML algorithms in the first stage of the real-time data processing of particle physics experiments operating at the CERN Large Hadron Collider (LHC). The LHC produces high-energy proton collisions (or events) every 25 ns, each consisting of about 1 MB of raw data. Since this throughput is overwhelming for the currently available processing and storage resources, the LHC experiments run a real-time event selection system, the so-called Level-1 trigger (L1T), to reduce the event rate from 40 MHz to 100 kHz [3-6]. Due to the size of the buffering system, the L1T system operates with a fixed latency of O(1 µs). While hls4ml excels as a tool to automatically generate low-latency ML firmware for L1T applications, it also offers interesting opportunities for edge-computing applications beyond particle physics whenever efficient, e.g.


Learning representations of irregular particle-detector geometry with distance-weighted graph networks

arXiv.org Machine Learning

We explore the use of graph networks to deal with irregular-geometry detectors in the context of particle reconstruction. Thanks to their representation-learning capabilities, graph networks can exploit the full detector granularity, while natively managing the event sparsity and arbitrarily complex detector geometries. We introduce two distance-weighted graph network architectures, dubbed GarNet and GravNet layers, and apply them to a typical particle reconstruction task. The performance of the new architectures is evaluated on a data set of simulated particle interactions on a toy model of a highly granular calorimeter, loosely inspired by the endcap calorimeter to be installed in the CMS detector for the High-Luminosity LHC phase. We study the clustering of energy depositions, which is the basis for calorimetric particle reconstruction, and provide a quantitative comparison to alternative approaches. The proposed algorithms outperform existing methods or reach competitive performance with lower computing-resource consumption. Being geometry-agnostic, the new architectures are not restricted to calorimetry and can be easily adapted to other use cases, such as tracking in silicon detectors.