Iiyama, Yutaro
Fast convolutional neural networks on FPGAs with hls4ml
Aarrestad, Thea, Loncar, Vladimir, Pierini, Maurizio, Summers, Sioni, Ngadiuba, Jennifer, Petersson, Christoffer, Linander, Hampus, Iiyama, Yutaro, Di Guglielmo, Giuseppe, Duarte, Javier, Harris, Philip, Rankin, Dylan, Jindariani, Sergo, Pedro, Kevin, Tran, Nhan, Liu, Mia, Kreinar, Edward, Wu, Zhenbin, Hoang, Duc
The hls4ml library [1, 2] is an open source software designed to facilitate the deployment of machine learning (ML) models on field-programmable gate arrays (FPGAs), targeting low-latency and low-power edge applications. Taking as input a neural network model, hls4ml generates C/C code designed to be transpiled into FPGA firmware by processing it with a high-level synthesis (HLS) library. The development of hls4ml was historically driven by the need to integrate ML algorithms in the first stage of the real-time data processing of particle physics experiments operating at the CERN Large Hadron Collider (LHC). The LHC produces high-energy proton collisions (or events) every 25 ns, each consisting of about 1 MB of raw data. Since this throughput is overwhelming for the currently available processing and storage resources, the LHC experiments run a real-time event selection system, the so-called Level-1 trigger (L1T), to reduce the event rate from 40 MHz to 100 kHz [3-6]. Due to the size of the buffering system, the L1T system operates with a fixed latency of O(1 µs). While hls4ml excels as a tool to automatically generate low-latency ML firmware for L1T applications, it also offers interesting opportunities for edge-computing applications beyond particle physics whenever efficient, e.g.
Learning representations of irregular particle-detector geometry with distance-weighted graph networks
Qasim, Shah Rukh, Kieseler, Jan, Iiyama, Yutaro, Pierini, Maurizio
We explore the use of graph networks to deal with irregular-geometry detectors in the context of particle reconstruction. Thanks to their representation-learning capabilities, graph networks can exploit the full detector granularity, while natively managing the event sparsity and arbitrarily complex detector geometries. We introduce two distance-weighted graph network architectures, dubbed GarNet and GravNet layers, and apply them to a typical particle reconstruction task. The performance of the new architectures is evaluated on a data set of simulated particle interactions on a toy model of a highly granular calorimeter, loosely inspired by the endcap calorimeter to be installed in the CMS detector for the High-Luminosity LHC phase. We study the clustering of energy depositions, which is the basis for calorimetric particle reconstruction, and provide a quantitative comparison to alternative approaches. The proposed algorithms outperform existing methods or reach competitive performance with lower computing-resource consumption. Being geometry-agnostic, the new architectures are not restricted to calorimetry and can be easily adapted to other use cases, such as tracking in silicon detectors.