Goto

Collaborating Authors

 Ibias, Alfredo


Unsupervised Cognition

arXiv.org Artificial Intelligence

Unsupervised learning methods have a soft inspiration in cognition models. To this day, the most successful unsupervised learning methods revolve around clustering samples in a mathematical space. In this paper we propose a state-of-the-art, primitive-based, unsupervised learning approach for decision-making inspired by a novel cognition framework. This representation-centric approach models the input space constructively as a distributed hierarchical structure in an input-agnostic way. We compared our approach with both current state-of-the-art unsupervised learning classification, and with current state-of-the-art cancer type classification. We show how our proposal outperforms previous state-of-the-art. We also evaluate some cognition-like properties of our proposal where it not only outperforms the compared algorithms (even supervised learning ones), but it also shows a different, more cognition-like, behaviour.


The Function-Representation Model of Computation

arXiv.org Artificial Intelligence

Cognitive Architectures are the forefront of the research into developing an artificial cognition. However, they approach the problem from a separated memory and program model of computation. This model of computation poses a fundamental problem: the knowledge retrieval heuristic. In this paper we propose to solve this problem by using a novel model of computation, one where memory and program are merged: the Function-Representation. This model of computation involves defining a generic Function-Representation and instantiating multiple instances of it. In this paper we explore the potential of this novel model of computation through mathematical definitions and proofs. We also explore the kind of functions a Function-Representation can implement, and present different ways to organise multiple instances of a Function-Representation.


Knowledge Discovery using Unsupervised Cognition

arXiv.org Artificial Intelligence

Knowledge discovery is key to understand and interpret a dataset, as well as to find the underlying relationships between its components. Unsupervised Cognition is a novel unsupervised learning algorithm that focus on modelling the learned data. This paper presents three techniques to perform knowledge discovery over an already trained Unsupervised Cognition model. Specifically, we present a technique for pattern mining, a technique for feature selection based on the previous pattern mining technique, and a technique for dimensionality reduction based on the previous feature selection technique. The final goal is to distinguish between relevant and irrelevant features and use them to build a model from which to extract meaningful patterns. We evaluated our proposals with empirical experiments and found that they overcome the state-of-the-art in knowledge discovery.


Reducing Diversity to Generate Hierarchical Archetypes

arXiv.org Artificial Intelligence

The Artificial Intelligence field seldom address the development of a fundamental building piece: a framework, methodology or algorithm to automatically build hierarchies of abstractions. This is a key requirement in order to build intelligent behaviour, as recent neuroscience studies clearly expose. In this paper we present a primitive-based framework to automatically generate hierarchies of constructive archetypes, as a theory of how to generate hierarchies of abstractions. We assume the existence of a primitive with very specific characteristics, and we develop our framework over it. We prove the effectiveness of our framework through mathematical definitions and proofs. Finally, we give a few insights about potential uses of our framework and the expected results.


Improving Noise Robustness through Abstractions and its Impact on Machine Learning

arXiv.org Artificial Intelligence

Noise is a fundamental problem in learning theory with huge effects in the application of Machine Learning (ML) methods, due to real world data tendency to be noisy. Additionally, introduction of malicious noise can make ML methods fail critically, as is the case with adversarial attacks. Thus, finding and developing alternatives to improve robustness to noise is a fundamental problem in ML. In this paper, we propose a method to deal with noise: mitigating its effect through the use of data abstractions. The goal is to reduce the effect of noise over the model's performance through the loss of information produced by the abstraction. However, this information loss comes with a cost: it can result in an accuracy reduction due to the missing information. First, we explored multiple methodologies to create abstractions, using the training dataset, for the specific case of numerical data and binary classification tasks. We also tested how these abstractions can affect robustness to noise with several experiments that explore the robustness of an Artificial Neural Network to noise when trained using raw data \emph{vs} when trained using abstracted data. The results clearly show that using abstractions is a viable approach for developing noise robust ML methods.