Goto

Collaborating Authors

 Iba, Hitoshi


Automatic Adaptation Rule Optimization via Large Language Models

arXiv.org Artificial Intelligence

Rule-based adaptation is a foundational approach to self-adaptation, characterized by its human readability and rapid response. However, building high-performance and robust adaptation rules is often a challenge because it essentially involves searching the optimal design in a complex (variables) space. In response, this paper attempt to employ large language models (LLMs) as a optimizer to construct and optimize adaptation rules, leveraging the common sense and reasoning capabilities inherent in LLMs. Preliminary experiments conducted in SWIM have validated the effectiveness and limitation of our method.


Exploring the Improvement of Evolutionary Computation via Large Language Models

arXiv.org Artificial Intelligence

Evolutionary computation (EC), as a powerful optimization algorithm, has been applied across various domains. However, as the complexity of problems increases, the limitations of EC have become more apparent. The advent of large language models (LLMs) has not only transformed natural language processing but also extended their capabilities to diverse fields. By harnessing LLMs' vast knowledge and adaptive capabilities, we provide a forward-looking overview of potential improvements LLMs can bring to EC, focusing on the algorithms themselves, population design, and additional enhancements. This presents a promising direction for future research at the intersection of LLMs and EC.


Large Language Models Synergize with Automated Machine Learning

arXiv.org Artificial Intelligence

Recently, program synthesis driven by large language models (LLMs) has become increasingly popular. However, program synthesis for machine learning (ML) tasks still poses significant challenges. This paper explores a novel form of program synthesis, targeting ML programs, by combining LLMs and automated machine learning (autoML). Specifically, our goal is to fully automate the generation and optimization of the code of the entire ML workflow, from data preparation to modeling and post-processing, utilizing only textual descriptions of the ML tasks. To manage the length and diversity of ML programs, we propose to break each ML program into smaller, manageable parts. Each part is generated separately by the LLM, with careful consideration of their compatibilities. To ensure compatibilities, we design a testing technique for ML programs. Unlike traditional program synthesis, which typically relies on binary evaluations (i.e., correct or incorrect), evaluating ML programs necessitates more than just binary judgments. Therefore, we further assess ML programs numerically and select the optimal programs from a range of candidates using AutoML methods. In experiments across various ML tasks, our method outperforms existing methods in 10 out of 12 tasks for generating ML programs. In addition, autoML significantly improves the performance of the generated ML programs. In experiments, given the textual task description, our method, Text-to-ML, generates the complete and optimized ML program in a fully autonomous process.