Goto

Collaborating Authors

 IEEE, null


Diabetic Retinopathy Screening Using Custom-Designed Convolutional Neural Network

arXiv.org Artificial Intelligence

The prevalence of diabetic retinopathy (DR) has reached 34.6% worldwide and is a major cause of blindness among middle-aged diabetic patients. Regular DR screening using fundus photography helps detect its complications and prevent its progression to advanced levels. As manual screening is time-consuming and subjective, machine learning (ML) and deep learning (DL) have been employed to aid graders. However, the existing CNN-based methods use either pre-trained CNN models or a brute force approach to design new CNN models, which are not customized to the complexity of fundus images. To overcome this issue, we introduce an approach for custom-design of CNN models, whose architectures are adapted to the structural patterns of fundus images and better represent the DR-relevant features. It takes the leverage of k-medoid clustering, principal component analysis (PCA), and inter-class and intra-class variations to automatically determine the depth and width of a CNN model. The designed models are lightweight, adapted to the internal structures of fundus images, and encode the discriminative patterns of DR lesions. The technique is validated on a local dataset from King Saud University Medical City, Saudi Arabia, and two challenging benchmark datasets from Kaggle: EyePACS and APTOS2019. The custom-designed models outperform the famous pre-trained CNN models like ResNet152, Densnet121, and ResNeSt50 with a significant decrease in the number of parameters and compete well with the state-of-the-art CNN-based DR screening methods. The proposed approach is helpful for DR screening under diverse clinical settings and referring the patients who may need further assessment and treatment to expert ophthalmologists.


Location-Centered House Price Prediction: A Multi-Task Learning Approach

arXiv.org Machine Learning

Accurate house prediction is of great significance to various real estate stakeholders such as house owners, buyers, investors, and agents. We propose a location-centered prediction framework that differs from existing work in terms of data profiling and prediction model. Regarding data profiling, we define and capture a fine-grained location profile powered by a diverse range of location data sources, such as transportation profile (e.g., distance to nearest train station), education profile (e.g., school zones and ranking), suburb profile based on census data, facility profile (e.g., nearby hospitals, supermarkets). Regarding the choice of prediction model, we observe that a variety of approaches either consider the entire house data for modeling, or split the entire data and model each partition independently. However, such modeling ignores the relatedness between partitions, and for all prediction scenarios, there may not be sufficient training samples per partition for the latter approach. We address this problem by conducting a careful study of exploiting the Multi-Task Learning (MTL) model. Specifically, we map the strategies for splitting the entire house data to the ways the tasks are defined in MTL, and each partition obtained is aligned with a task. Furthermore, we select specific MTL-based methods with different regularization terms to capture and exploit the relatedness between tasks. Based on real-world house transaction data collected in Melbourne, Australia. We design extensive experimental evaluations, and the results indicate a significant superiority of MTL-based methods over state-of-the-art approaches. Meanwhile, we conduct an in-depth analysis on the impact of task definitions and method selections in MTL on the prediction performance, and demonstrate that the impact of task definitions on prediction performance far exceeds that of method selections.