Goto

Collaborating Authors

 Hyun, Minsung


Disentangling Options with Hellinger Distance Regularizer

arXiv.org Machine Learning

In reinforcement learning (RL), temporal abstraction still remains as an important and unsolved problem. The options framework provided clues to temporal abstraction in the RL, and the option-critic architecture elegantly solved the two problems of finding options and learning RL agents in an end-to-end manner. However, it is necessary to examine whether the options learned through this method play a mutually exclusive role. In this paper, we propose a Hellinger distance regularizer, a method for disentangling options. In addition, we will shed light on various indicators from the statistical point of view to compare with the options learned through the existing option-critic architecture.


Task-oriented Design through Deep Reinforcement Learning

arXiv.org Machine Learning

We propose a new low-cost machine-learning-based methodology which assists designers in reducing the gap between the problem and the solution in the design process. Our work applies reinforcement learning (RL) to find the optimal task-oriented design solution through the construction of the design action for each task. For this task-oriented design, the 3D design process in product design is assigned to an action space in Deep RL, and the desired 3D model is obtained by training each design action according to the task. By showing that this method achieves satisfactory design even when applied to a task pursuing multiple goals, we suggest the direction of how machine learning can contribute to the design process. Also, we have validated with product designers that this methodology can assist the creative part in the process of design.


Towards Governing Agent's Efficacy: Action-Conditional $\beta$-VAE for Deep Transparent Reinforcement Learning

arXiv.org Artificial Intelligence

We tackle the blackbox issue of deep neural networks in the settings of reinforcement learning (RL) where neural agents learn towards maximizing reward gains in an uncontrollable way. Such learning approach is risky when the interacting environment includes an expanse of state space because it is then almost impossible to foresee all unwanted outcomes and penalize them with negative rewards beforehand. Unlike reverse analysis of learned neural features from previous works, our proposed method \nj{tackles the blackbox issue by encouraging} an RL policy network to learn interpretable latent features through an implementation of a disentangled representation learning method. Toward this end, our method allows an RL agent to understand self-efficacy by distinguishing its influences from uncontrollable environmental factors, which closely resembles the way humans understand their scenes. Our experimental results show that the learned latent factors not only are interpretable, but also enable modeling the distribution of entire visited state space with a specific action condition. We have experimented that this characteristic of the proposed structure can lead to ex post facto governance for desired behaviors of RL agents.