Hyeji Kim
Discovering Potential Correlations via Hypercontractivity
Hyeji Kim, Weihao Gao, Sreeram Kannan, Sewoong Oh, Pramod Viswanath
Discovering a correlation from one variable to another variable is of fundamental scientific and practical interest. While existing correlation measures are suitable for discovering average correlation, they fail to discover hidden or potential correlations. To bridge this gap, (i) we postulate a set of natural axioms that we expect a measure of potential correlation to satisfy; (ii) we show that the rate of information bottleneck, i.e., the hypercontractivity coefficient, satisfies all the proposed axioms; (iii) we provide a novel estimator to estimate the hypercontractivity coefficient from samples; and (iv) we provide numerical experiments demonstrating that this proposed estimator discovers potential correlations among various indicators of WHO datasets, is robust in discovering gene interactions from gene expression time series data, and is statistically more powerful than the estimators for other correlation measures in binary hypothesis testing of canonical examples of potential correlations.
Deepcode: Feedback Codes via Deep Learning
Hyeji Kim, Yihan Jiang, Sreeram Kannan, Sewoong Oh, Pramod Viswanath
The design of codes for communicating reliably over a statistically well defined channel is an important endeavor involving deep mathematical research and wideranging practical applications. In this work, we present the first family of codes obtained via deep learning, which significantly beats state-of-the-art codes designed over several decades of research. The communication channel under consideration is the Gaussian noise channel with feedback, whose study was initiated by Shannon; feedback is known theoretically to improve reliability of communication, but no practical codes that do so have ever been successfully constructed. We break this logjam by integrating information theoretic insights harmoniously with recurrent-neural-network based encoders and decoders to create novel codes that outperform known codes by 3 orders of magnitude in reliability. We also demonstrate several desirable properties in the codes: (a) generalization to larger block lengths; (b) composability with known codes; (c) adaptation to practical constraints. This result also presents broader ramifications to coding theory: even when the channel has a clear mathematical model, deep learning methodologies, when combined with channel-specific information-theoretic insights, can potentially beat state-of-the-art codes, constructed over decades of mathematical research.
Turbo Autoencoder: Deep learning based channel codes for point-to-point communication channels
Yihan Jiang, Hyeji Kim, Himanshu Asnani, Sreeram Kannan, Sewoong Oh, Pramod Viswanath
Designing codes that combat the noise in a communication medium has remained a significant area of research in information theory as well as wireless communications. Asymptotically optimal channel codes have been developed by mathematicians for communicating under canonical models after over 60 years of research. On the other hand, in many non-canonical channel settings, optimal codes do not exist and the codes designed for canonical models are adapted via heuristics to these channels and are thus not guaranteed to be optimal. In this work, we make significant progress on this problem by designing a fully end-to-end jointly trained neural encoder and decoder, namely, Turbo Autoencoder (TurboAE), with the following contributions: (a) under moderate block lengths, TurboAE approaches state-of-the-art performance under canonical channels; (b) moreover, TurboAE outperforms the state-of-the-art codes under non-canonical settings in terms of reliability. TurboAE shows that the development of channel coding design can be automated via deep learning, with near-optimal performance.
Turbo Autoencoder: Deep learning based channel codes for point-to-point communication channels
Yihan Jiang, Hyeji Kim, Himanshu Asnani, Sreeram Kannan, Sewoong Oh, Pramod Viswanath
Designing codes that combat the noise in a communication medium has remained a significant area of research in information theory as well as wireless communications. Asymptotically optimal channel codes have been developed by mathematicians for communicating under canonical models after over 60 years of research. On the other hand, in many non-canonical channel settings, optimal codes do not exist and the codes designed for canonical models are adapted via heuristics to these channels and are thus not guaranteed to be optimal. In this work, we make significant progress on this problem by designing a fully end-to-end jointly trained neural encoder and decoder, namely, Turbo Autoencoder (TurboAE), with the following contributions: (a) under moderate block lengths, TurboAE approaches state-of-the-art performance under canonical channels; (b) moreover, TurboAE outperforms the state-of-the-art codes under non-canonical settings in terms of reliability. TurboAE shows that the development of channel coding design can be automated via deep learning, with near-optimal performance.
Discovering Potential Correlations via Hypercontractivity
Hyeji Kim, Weihao Gao, Sreeram Kannan, Sewoong Oh, Pramod Viswanath
Discovering a correlation from one variable to another variable is of fundamental scientific and practical interest. While existing correlation measures are suitable for discovering average correlation, they fail to discover hidden or potential correlations. To bridge this gap, (i) we postulate a set of natural axioms that we expect a measure of potential correlation to satisfy; (ii) we show that the rate of information bottleneck, i.e., the hypercontractivity coefficient, satisfies all the proposed axioms; (iii) we provide a novel estimator to estimate the hypercontractivity coefficient from samples; and (iv) we provide numerical experiments demonstrating that this proposed estimator discovers potential correlations among various indicators of WHO datasets, is robust in discovering gene interactions from gene expression time series data, and is statistically more powerful than the estimators for other correlation measures in binary hypothesis testing of canonical examples of potential correlations.