Goto

Collaborating Authors

 Hwang, Won-Joo


Joint Communication and Computation Framework for Goal-Oriented Semantic Communication with Distortion Rate Resilience

arXiv.org Artificial Intelligence

Recent research efforts on semantic communication have mostly considered accuracy as a main problem for optimizing goal-oriented communication systems. However, these approaches introduce a paradox: the accuracy of artificial intelligence (AI) tasks should naturally emerge through training rather than being dictated by network constraints. Acknowledging this dilemma, this work introduces an innovative approach that leverages the rate-distortion theory to analyze distortions induced by communication and semantic compression, thereby analyzing the learning process. Specifically, we examine the distribution shift between the original data and the distorted data, thus assessing its impact on the AI model's performance. Founding upon this analysis, we can preemptively estimate the empirical accuracy of AI tasks, making the goal-oriented semantic communication problem feasible. To achieve this objective, we present the theoretical foundation of our approach, accompanied by simulations and experiments that demonstrate its effectiveness. The experimental results indicate that our proposed method enables accurate AI task performance while adhering to network constraints, establishing it as a valuable contribution to the field of signal processing. Furthermore, this work advances research in goal-oriented semantic communication and highlights the significance of data-driven approaches in optimizing the performance of intelligent systems.


Wirelessly Powered Federated Learning Networks: Joint Power Transfer, Data Sensing, Model Training, and Resource Allocation

arXiv.org Artificial Intelligence

Federated learning (FL) has found many successes in wireless networks; however, the implementation of FL has been hindered by the energy limitation of mobile devices (MDs) and the availability of training data at MDs. How to integrate wireless power transfer and mobile crowdsensing towards sustainable FL solutions is a research topic entirely missing from the open literature. This work for the first time investigates a resource allocation problem in collaborative sensing-assisted sustainable FL (S2FL) networks with the goal of minimizing the total completion time. We investigate a practical harvesting-sensing-training-transmitting protocol in which energy-limited MDs first harvest energy from RF signals, use it to gain a reward for user participation, sense the training data from the environment, train the local models at MDs, and transmit the model updates to the server. The total completion time minimization problem of jointly optimizing power transfer, transmit power allocation, data sensing, bandwidth allocation, local model training, and data transmission is complicated due to the non-convex objective function, highly non-convex constraints, and strongly coupled variables. We propose a computationally-efficient path-following algorithm to obtain the optimal solution via the decomposition technique. In particular, inner convex approximations are developed for the resource allocation subproblem, and the subproblems are performed alternatively in an iterative fashion. Simulation results are provided to evaluate the effectiveness of the proposed S2FL algorithm in reducing the completion time up to 21.45% in comparison with other benchmark schemes. Further, we investigate an extension of our work from frequency division multiple access (FDMA) to non-orthogonal multiple access (NOMA) and show that NOMA can speed up the total completion time 8.36% on average of the considered FL system.


Intelligent Radio Signal Processing: A Contemporary Survey

arXiv.org Artificial Intelligence

Intelligent signal processing for wireless communications is a vital task in modern wireless systems, but it faces new challenges because of network heterogeneity, diverse service requirements, a massive number of connections, and various radio characteristics. Owing to recent advancements in big data and computing technologies, artificial intelligence (AI) has become a useful tool for radio signal processing and has enabled the realization of intelligent radio signal processing. This survey covers four intelligent signal processing topics for the wireless physical layer, including modulation classification, signal detection, beamforming, and channel estimation. In particular, each theme is presented in a dedicated section, starting with the most fundamental principles, followed by a review of up-to-date studies and a summary. To provide the necessary background, we first present a brief overview of AI techniques such as machine learning, deep learning, and federated learning. Finally, we highlight a number of research challenges and future directions in the area of intelligent radio signal processing. We expect this survey to be a good source of information for anyone interested in intelligent radio signal processing, and the perspectives we provide therein will stimulate many more novel ideas and contributions in the future.


Swarm Intelligence for Next-Generation Wireless Networks: Recent Advances and Applications

arXiv.org Artificial Intelligence

Due to the proliferation of smart devices and emerging applications, many next-generation technologies have been paid for the development of wireless networks. Even though commercial 5G has just been widely deployed in some countries, there have been initial efforts from academia and industrial communities for 6G systems. In such a network, a very large number of devices and applications are emerged, along with heterogeneity of technologies, architectures, mobile data, etc., and optimizing such a network is of utmost importance. Besides convex optimization and game theory, swarm intelligence (SI) has recently appeared as a promising optimization tool for wireless networks. As a new subdivision of artificial intelligence, SI is inspired by the collective behaviors of societies of biological species. In SI, simple agents with limited capabilities would achieve intelligent strategies for high-dimensional and challenging problems, so it has recently found many applications in next-generation wireless networks (NGN). However, researchers may not be completely aware of the full potential of SI techniques. In this work, our primary focus will be the integration of these two domains: NGN and SI. Firstly, we provide an overview of SI techniques from fundamental concepts to well-known optimizers. Secondly, we review the applications of SI to settle emerging issues in NGN, including spectrum management and resource allocation, wireless caching and edge computing, network security, and several other miscellaneous issues. Finally, we highlight open challenges and issues in the literature, and introduce some interesting directions for future research.