Goto

Collaborating Authors

 Hwang, Soonmin


SafeShift: Safety-Informed Distribution Shifts for Robust Trajectory Prediction in Autonomous Driving

arXiv.org Artificial Intelligence

As autonomous driving technology matures, safety and robustness of its key components, including trajectory prediction, is vital. Though real-world datasets, such as Waymo Open Motion, provide realistic recorded scenarios for model development, they often lack truly safety-critical situations. Rather than utilizing unrealistic simulation or dangerous real-world testing, we instead propose a framework to characterize such datasets and find hidden safety-relevant scenarios within. Our approach expands the spectrum of safety-relevance, allowing us to study trajectory prediction models under a safety-informed, distribution shift setting. We contribute a generalized scenario characterization method, a novel scoring scheme to find subtly-avoided risky scenarios, and an evaluation of trajectory prediction models in this setting. We further contribute a remediation strategy, achieving a 10% average reduction in prediction collision rates. To facilitate future research, we release our code to the public: github.com/cmubig/SafeShift


T2FPV: Dataset and Method for Correcting First-Person View Errors in Pedestrian Trajectory Prediction

arXiv.org Artificial Intelligence

Predicting pedestrian motion is essential for developing socially-aware robots that interact in a crowded environment. While the natural visual perspective for a social interaction setting is an egocentric view, the majority of existing work in trajectory prediction therein has been investigated purely in the top-down trajectory space. To support first-person view trajectory prediction research, we present T2FPV, a method for constructing high-fidelity first-person view (FPV) datasets given a real-world, top-down trajectory dataset; we showcase our approach on the ETH/UCY pedestrian dataset to generate the egocentric visual data of all interacting pedestrians, creating the T2FPV-ETH dataset. In this setting, FPV-specific errors arise due to imperfect detection and tracking, occlusions, and field-of-view (FOV) limitations of the camera. To address these errors, we propose CoFE, a module that further refines the imputation of missing data in an end-to-end manner with trajectory forecasting algorithms. Our method reduces the impact of such FPV errors on downstream prediction performance, decreasing displacement error by more than 10% on average. To facilitate research engagement, we release our T2FPV-ETH dataset and software tools.


Multispectral Transfer Network: Unsupervised Depth Estimation for All-Day Vision

AAAI Conferences

To understand the real-world, it is essential to perceive in all-day conditions including cases which are not suitable for RGB sensors, especially at night. Beyond these limitations, the innovation introduced here is a multispectral solution in the form of depth estimation from a thermal sensor without an additional depth sensor.Based on an analysis of multispectral properties and the relevance to depth predictions, we propose an efficient and novel multi-task framework called the Multispectral Transfer Network (MTN) to estimate a depth image from a single thermal image. By exploiting geometric priors and chromaticity clues, our model can generate a pixel-wise depth image in an unsupervised manner. Moreover, we propose a new type of multitask module called Interleaver as a means of incorporating the chromaticity and fine details of skip-connections into the depth estimation framework without sharing feature layers. Lastly, we explain a novel technical means of stably training and covering large disparities and extending thermal images to data-driven methods for all-day conditions. In experiments, we demonstrate the better performance and generalization of depth estimation through the proposed multispectral stereo dataset, including various driving conditions.