Goto

Collaborating Authors

 Hwang, Kyomin


Unlocking the Potential of Unlabeled Data in Semi-Supervised Domain Generalization

arXiv.org Artificial Intelligence

We address the problem of semi-supervised domain generalization (SSDG), where the distributions of train and test data differ, and only a small amount of labeled data along with a larger amount of unlabeled data are available during training. Existing SSDG methods that leverage only the unlabeled samples for which the model's predictions are highly confident (confident-unlabeled samples), limit the full utilization of the available unlabeled data. To the best of our knowledge, we are the first to explore a method for incorporating the unconfident-unlabeled samples that were previously disregarded in SSDG setting. To this end, we propose UPCSC to utilize these unconfident-unlabeled samples in SSDG that consists of two modules: 1) Unlabeled Proxy-based Contrastive learning (UPC) module, treating unconfident-unlabeled samples as additional negative pairs and 2) Surrogate Class learning (SC) module, generating positive pairs for unconfident-unlabeled samples using their confusing class set. These modules are plug-and-play and do not require any domain labels, which can be easily integrated into existing approaches. Experiments on four widely used SSDG benchmarks demonstrate that our approach consistently improves performance when attached to baselines and outperforms competing plug-and-play methods. We also analyze the role of our method in SSDG, showing that it enhances class-level discriminability and mitigates domain gaps. The code is available at https://github.com/dongkwani/UPCSC.


Deep Support Vectors

arXiv.org Artificial Intelligence

Deep learning has achieved tremendous success. \nj{However,} unlike SVMs, which provide direct decision criteria and can be trained with a small dataset, it still has significant weaknesses due to its requirement for massive datasets during training and the black-box characteristics on decision criteria. \nj{This paper addresses} these issues by identifying support vectors in deep learning models. To this end, we propose the DeepKKT condition, an adaptation of the traditional Karush-Kuhn-Tucker (KKT) condition for deep learning models, and confirm that generated Deep Support Vectors (DSVs) using this condition exhibit properties similar to traditional support vectors. This allows us to apply our method to few-shot dataset distillation problems and alleviate the black-box characteristics of deep learning models. Additionally, we demonstrate that the DeepKKT condition can transform conventional classification models into generative models with high fidelity, particularly as latent \jh{generative} models using class labels as latent variables. We validate the effectiveness of DSVs \nj{using common datasets (ImageNet, CIFAR10 \nj{and} CIFAR100) on the general architectures (ResNet and ConvNet)}, proving their practical applicability. (See Fig.~\ref{fig:generated})


Do not think pink elephant!

arXiv.org Artificial Intelligence

Large Models (LMs) have heightened expectations for the potential of general AI as they are akin to human intelligence. This paper shows that recent large models such as Stable Diffusion and DALL-E3 also share the vulnerability of human intelligence, namely the "white bear phenomenon". We investigate the causes of the white bear phenomenon by analyzing their representation space. Based on this analysis, we propose a simple prompt-based attack method, which generates figures prohibited by the LM provider's policy. To counter these attacks, we introduce prompt-based defense strategies inspired by cognitive therapy techniques, successfully mitigating attacks by up to 48.22\%.


Mitigating the Bias in the Model for Continual Test-Time Adaptation

arXiv.org Artificial Intelligence

Continual Test-Time Adaptation (CTA) is a challenging task that aims to adapt a source pre-trained model to continually changing target domains. In the CTA setting, a model does not know when the target domain changes, thus facing a drastic change in the distribution of streaming inputs during the test-time. The key challenge is to keep adapting the model to the continually changing target domains in an online manner. We find that a model shows highly biased predictions as it constantly adapts to the chaining distribution of the target data. It predicts certain classes more often than other classes, making inaccurate over-confident predictions. This paper mitigates this issue to improve performance in the CTA scenario. To alleviate the bias issue, we make class-wise exponential moving average target prototypes with reliable target samples and exploit them to cluster the target features class-wisely. Moreover, we aim to align the target distributions to the source distribution by anchoring the target feature to its corresponding source prototype. With extensive experiments, our proposed method achieves noteworthy performance gain when applied on top of existing CTA methods without substantial adaptation time overhead.