Huzhang, Guangda
Residual Multi-Task Learner for Applied Ranking
Fu, Cong, Wang, Kun, Wu, Jiahua, Chen, Yizhou, Huzhang, Guangda, Ni, Yabo, Zeng, Anxiang, Zhou, Zhiming
Modern e-commerce platforms rely heavily on modeling diverse user feedback to provide personalized services. Consequently, multi-task learning has become an integral part of their ranking systems. However, existing multi-task learning methods encounter two main challenges: some lack explicit modeling of task relationships, resulting in inferior performance, while others have limited applicability due to being computationally intensive, having scalability issues, or relying on strong assumptions. To address these limitations and better fit our real-world scenario, pre-rank in Shopee Search, we introduce in this paper ResFlow, a lightweight multi-task learning framework that enables efficient cross-task information sharing via residual connections between corresponding layers of task networks. Extensive experiments on datasets from various scenarios and modalities demonstrate its superior performance and adaptability over state-of-the-art methods. The online A/B tests in Shopee Search showcase its practical value in large-scale industrial applications, evidenced by a 1.29% increase in OPU (order-per-user) without additional system latency. ResFlow is now fully deployed in the pre-rank module of Shopee Search. To facilitate efficient online deployment, we propose a novel offline metric Weighted Recall@K, which aligns well with our online metric OPU, addressing the longstanding online-offline metric misalignment issue. Besides, we propose to fuse scores from the multiple tasks additively when ranking items, which outperforms traditional multiplicative fusion. The code is released at https://github.com/BrunoTruthAlliance/ResFlow
Recurrent Temporal Revision Graph Networks
Chen, Yizhou, Zeng, Anxiang, Huzhang, Guangda, Yu, Qingtao, Zhang, Kerui, Yuanpeng, Cao, Wu, Kangle, Yu, Han, Zhou, Zhiming
Temporal graphs offer more accurate modeling of many real-world scenarios than static graphs. However, neighbor aggregation, a critical building block of graph networks, for temporal graphs, is currently straightforwardly extended from that of static graphs. It can be computationally expensive when involving all historical neighbors during such aggregation. In practice, typically only a subset of the most recent neighbors are involved. However, such subsampling leads to incomplete and biased neighbor information. To address this limitation, we propose a novel framework for temporal neighbor aggregation that uses the recurrent neural network with node-wise hidden states to integrate information from all historical neighbors for each node to acquire the complete neighbor information. We demonstrate the superior theoretical expressiveness of the proposed framework as well as its state-of-the-art performance in real-world applications. Notably, it achieves a significant +9.6% improvement on averaged precision in a real-world Ecommerce dataset over existing methods on 2-layer models.
Clustered Embedding Learning for Recommender Systems
Chen, Yizhou, Huzhang, Guangda, Zeng, Anxiang, Yu, Qingtao, Sun, Hui, Li, Heng-yi, Li, Jingyi, Ni, Yabo, Yu, Han, Zhou, Zhiming
In recent years, recommender systems have advanced rapidly, where embedding learning for users and items plays a critical role. A standard method learns a unique embedding vector for each user and item. However, such a method has two important limitations in real-world applications: 1) it is hard to learn embeddings that generalize well for users and items with rare interactions on their own; and 2) it may incur unbearably high memory costs when the number of users and items scales up. Existing approaches either can only address one of the limitations or have flawed overall performances. In this paper, we propose Clustered Embedding Learning (CEL) as an integrated solution to these two problems. CEL is a plug-and-play embedding learning framework that can be combined with any differentiable feature interaction model. It is capable of achieving improved performance, especially for cold users and items, with reduced memory cost. CEL enables automatic and dynamic clustering of users and items in a top-down fashion, where clustered entities jointly learn a shared embedding. The accelerated version of CEL has an optimal time complexity, which supports efficient online updates. Theoretically, we prove the identifiability and the existence of a unique optimal number of clusters for CEL in the context of nonnegative matrix factorization. Empirically, we validate the effectiveness of CEL on three public datasets and one business dataset, showing its consistently superior performance against current state-of-the-art methods. In particular, when incorporating CEL into the business model, it brings an improvement of $+0.6\%$ in AUC, which translates into a significant revenue gain; meanwhile, the size of the embedding table gets $2650$ times smaller.
Exploit Customer Life-time Value with Memoryless Experiments
Zhang, Zizhao, Zhao, Yifei, Huzhang, Guangda
As a measure of the long-term contribution produced by customers in a service or product relationship, life-time value, or LTV, can more comprehensively find the optimal strategy for service delivery. However, it is challenging to accurately abstract the LTV scene, model it reasonably, and find the optimal solution. The current theories either cannot precisely express LTV because of the single modeling structure, or there is no efficient solution. We propose a general LTV modeling method, which solves the problem that customers' long-term contribution is difficult to quantify while existing methods, such as modeling the click-through rate, only pursue the short-term contribution. At the same time, we also propose a fast dynamic programming solution based on a mutated bisection method and the memoryless repeated experiments assumption. The model and method can be applied to different service scenarios, such as the recommendation system. Experiments on real-world datasets confirm the effectiveness of the proposed model and optimization method. In addition, this whole LTV structure was deployed at a large E-commerce mobile phone application, where it managed to select optimal push message sending time and achieved a 10\% LTV improvement.
Learning-To-Ensemble by Contextual Rank Aggregation in E-Commerce
Wang, Xuesi, Huzhang, Guangda, Lin, Qianying, Da, Qing
Ensemble models in E-commerce combine predictions from multiple sub-models for ranking and revenue improvement. Industrial ensemble models are typically deep neural networks, following the supervised learning paradigm to infer conversion rate given inputs from sub-models. However, this process has the following two problems. Firstly, the point-wise scoring approach disregards the relationships between items and leads to homogeneous displayed results, while diversified display benefits user experience and revenue. Secondly, the learning paradigm focuses on the ranking metrics and does not directly optimize the revenue. In our work, we propose a new Learning-To-Ensemble (LTE) framework RAEGO, which replaces the ensemble model with a contextual Rank Aggregator (RA) and explores the best weights of sub-models by the Evaluator-Generator Optimization (EGO). To achieve the best online performance, we propose a new rank aggregation algorithm TournamentGreedy as a refinement of classic rank aggregators, which also produces the best average weighted Kendall Tau Distance (KTD) amongst all the considered algorithms with quadratic time complexity. Under the assumption that the best output list should be Pareto Optimal on the KTD metric for sub-models, we show that our RA algorithm has higher efficiency and coverage in exploring the optimal weights. Combined with the idea of Bayesian Optimization and gradient descent, we solve the online contextual Black-Box Optimization task that finds the optimal weights for sub-models given a chosen RA model. RA-EGO has been deployed in our online system and has improved the revenue significantly.
Imitate TheWorld: A Search Engine Simulation Platform
Gao, Yongqing, Huzhang, Guangda, Shen, Weijie, Liu, Yawen, Zhou, Wen-Ji, Da, Qing, Yu, Yang
Recent E-commerce applications benefit from the growth of deep learning techniques. However, we notice that many works attempt to maximize business objectives by closely matching offline labels which follow the supervised learning paradigm. This results in models obtain high offline performance in terms of Area Under Curve (AUC) and Normalized Discounted Cumulative Gain (NDCG), but cannot consistently increase the revenue metrics such as purchases amount of users. Towards the issues, we build a simulated search engine AESim that can properly give feedback by a well-trained discriminator for generated pages, as a dynamic dataset. Different from previous simulation platforms which lose connection with the real world, ours depends on the real data in AliExpress Search: we use adversarial learning to generate virtual users and use Generative Adversarial Imitation Learning (GAIL) to capture behavior patterns of users. Our experiments also show AESim can better reflect the online performance of ranking models than classic ranking metrics, implying AESim can play a surrogate of AliExpress Search and evaluate models without going online.
Validation Set Evaluation can be Wrong: An Evaluator-Generator Approach for Maximizing Online Performance of Ranking in E-commerce
Huzhang, Guangda, Pang, Zhen-Jia, Gao, Yongqing, Zhou, Wen-Ji, Da, Qing, Zeng, An-Xiang, Yu, Yang
Learning-to-rank (LTR) has become a key technology in E-commerce applications. Previous LTR approaches followed the supervised learning paradigm so that learned models should match the labeled data point-wisely or pair-wisely. However, we have noticed that global context information, including the total order of items in the displayed webpage, can play an important role in interactions with the customers. Therefore, to approach the best global ordering, the exploration in a large combinatorial space of items is necessary, which requires evaluating orders that may not appear in the labeled data. In this scenario, we first show that the classical data-based metrics can be inconsistent with online performance, or even misleading. We then propose to learn an evaluator and search the best model guided by the evaluator, which forms the evaluator-generator framework for training the group-wise LTR model. The evaluator is learned from the labeled data, and is enhanced by incorporating the order context information. The generator is trained with the supervision of the evaluator by reinforcement learning to generate the best order in the combinatorial space. Our experiments in one of the world's largest retail platforms disclose that the learned evaluator is a much better indicator than classical data-based metrics. Moreover, our LTR model achieves a significant improvement ($\textgreater2\%$) from the current industrial-level pair-wise models in terms of both Conversion Rate (CR) and Gross Merchandise Volume (GMV) in online A/B tests.