Goto

Collaborating Authors

 Huynh, Trung Dong


A taxonomy of explanations to support Explainability-by-Design

arXiv.org Artificial Intelligence

As automated decision-making solutions are increasingly applied to all aspects of everyday life, capabilities to generate meaningful explanations for a variety of stakeholders (i.e., decision-makers, recipients of decisions, auditors, regulators...) become crucial. In this paper, we present a taxonomy of explanations that was developed as part of a holistic 'Explainability-by-Design' approach for the purposes of the project PLEAD. The taxonomy was built with a view to produce explanations for a wide range of requirements stemming from a variety of regulatory frameworks or policies set at the organizational level either to translate high-level compliance requirements or to meet business needs. The taxonomy comprises nine dimensions. It is used as a stand-alone classifier of explanations conceived as detective controls, in order to aid supportive automated compliance strategies. A machinereadable format of the taxonomy is provided in the form of a light ontology and the benefits of starting the Explainability-by-Design journey with such a taxonomy are demonstrated through a series of examples.


A Methodology and Software Architecture to Support Explainability-by-Design

arXiv.org Artificial Intelligence

Algorithms play a crucial role in many technological systems that control or affect various aspects of our lives. As a result, providing explanations for their decisions to address the needs of users and organisations is increasingly expected by laws, regulations, codes of conduct, and the public. However, as laws and regulations do not prescribe how to meet such expectations, organisations are often left to devise their own approaches to explainability, inevitably increasing the cost of compliance and good governance. Hence, we envision Explainability-by-Design, a holistic methodology characterised by proactive measures to include explanation capability in the design of decision-making systems. The methodology consists of three phases: (A) Explanation Requirement Analysis, (B) Explanation Technical Design, and (C) Explanation Validation. This paper describes phase (B), a technical workflow to implement explanation capability from requirements elicited by domain experts for a specific application context. Outputs of this phase are a set of configurations, allowing a reusable explanation service to exploit logs provided by the target application to create provenance traces of the application's decisions. The provenance then can be queried to extract relevant data points, which can be used in explanation plans to construct explanations personalised to their consumers. Following the workflow, organisations can design their decision-making systems to produce explanations that meet the specified requirements. To facilitate the process, we present a software architecture with reusable components to incorporate the resulting explanation capability into an application. Finally, we applied the workflow to two application scenarios and measured the associated development costs. It was shown that the approach is tractable in terms of development time, which can be as low as two hours per sentence.


Provenance Graph Kernel

arXiv.org Artificial Intelligence

Provenance is a record that describes how entities, activities, and agents have influenced a piece of data. Such provenance information is commonly represented in graphs with relevant labels on both their nodes and edges. With the growing adoption of provenance in a wide range of application domains, increasingly, users are confronted with an abundance of graph data, which may prove challenging to analyse. Graph kernels, on the other hand, have been consistently and successfully used to efficiently classify graphs. In this paper, we introduce a novel graph kernel called \emph{provenance kernel}, which is inspired by and tailored for provenance data. It decomposes a provenance graph into tree-patterns rooted at a given node and considers the labels of edges and nodes up to a certain distance from the root. We employ provenance kernels to classify provenance graphs from three application domains. Our evaluation shows that they perform well in terms of classification accuracy and yield competitive results when compared against standard graph kernel methods and the provenance network analytics method while taking significantly less time.Moreover, we illustrate how the provenance types used in provenance kernels help improve the explainability of predictive models.


Crowdsourcing Complex Workflows under Budget Constraints

AAAI Conferences

We consider the problem of task allocation in crowdsourcing systems with multiple complex workflows, each of which consists of a set of inter-dependent micro-tasks.We propose Budgeteer, an algorithm to solve this problem under a budget constraint. In particular, our algorithm first calculates an efficient way to allocate budget to each workflow. It then determines the number of inter-dependent micro-tasks and the price to pay for each task within each workflow, given the corresponding budget constraints. We empirically evaluate it on a well-known crowdsourcing-based text correction workflow using Amazon Mechanical Turk, and show that Budgeteer can achieve similar levels of accuracy to current benchmarks, but is on average 45 % cheaper.