Goto

Collaborating Authors

 Huynh, Chuong


VeriGraph: Scene Graphs for Execution Verifiable Robot Planning

arXiv.org Artificial Intelligence

Recent advancements in vision-language models (VLMs) offer potential for robot task planning, but challenges remain due to VLMs' tendency to generate incorrect action sequences. To address these limitations, we propose VeriGraph, a novel framework that integrates VLMs for robotic planning while verifying action feasibility. VeriGraph employs scene graphs as an intermediate representation, capturing key objects and spatial relationships to improve plan verification and refinement. The system generates a scene graph from input images and uses it to iteratively check and correct action sequences generated by an LLM-based task planner, ensuring constraints are respected and actions are executable. Our approach significantly enhances task completion rates across diverse manipulation scenarios, outperforming baseline methods by 58% for language-based tasks and 30% for image-based tasks.


MaGGIe: Masked Guided Gradual Human Instance Matting

arXiv.org Artificial Intelligence

Human matting is a foundation task in image and video processing, where human foreground pixels are extracted from the input. Prior works either improve the accuracy by additional guidance or improve the temporal consistency of a single instance across frames. We propose a new framework MaGGIe, Masked Guided Gradual Human Instance Matting, which predicts alpha mattes progressively for each human instances while maintaining the computational cost, precision, and consistency. Our method leverages modern architectures, including transformer attention and sparse convolution, to output all instance mattes simultaneously without exploding memory and latency. Although keeping constant inference costs in the multiple-instance scenario, our framework achieves robust and versatile performance on our proposed synthesized benchmarks. With the higher quality image and video matting benchmarks, the novel multi-instance synthesis approach from publicly available sources is introduced to increase the generalization of models in real-world scenarios.


SimpSON: Simplifying Photo Cleanup with Single-Click Distracting Object Segmentation Network

arXiv.org Artificial Intelligence

In photo editing, it is common practice to remove visual distractions to improve the overall image quality and highlight the primary subject. However, manually selecting and removing these small and dense distracting regions can be a laborious and time-consuming task. In this paper, we propose an interactive distractor selection method that is optimized to achieve the task with just a single click. Our method surpasses the precision and recall achieved by the traditional method of running panoptic segmentation and then selecting the segments containing the clicks. We also showcase how a transformer-based module can be used to identify more distracting regions similar to the user's click position. Our experiments demonstrate that the model can effectively and accurately segment unknown distracting objects interactively and in groups. By significantly simplifying the photo cleaning and retouching process, our proposed model provides inspiration for exploring rare object segmentation and group selection with a single click.


Progressive Semantic Segmentation

arXiv.org Artificial Intelligence

The objective of this work is to segment high-resolution images without overloading GPU memory usage or losing the fine details in the output segmentation map. The memory constraint means that we must either downsample the big image or divide the image into local patches for separate processing. However, the former approach would lose the fine details, while the latter can be ambiguous due to the lack of a global picture. In this work, we present MagNet, a multi-scale framework that resolves local ambiguity by looking at the image at multiple magnification levels. MagNet has multiple processing stages, where each stage corresponds to a magnification level, and the output of one stage is fed into the next stage for coarse-to-fine information propagation. Each stage analyzes the image at a higher resolution than the previous stage, recovering the previously lost details due to the lossy downsampling step, and the segmentation output is progressively refined through the processing stages. Experiments on three high-resolution datasets of urban views, aerial scenes, and medical images show that MagNet consistently outperforms the state-of-the-art methods by a significant margin.