Goto

Collaborating Authors

 Hutchinson, Rebecca


Under-Counted Tensor Completion with Neural Incorporation of Attributes

arXiv.org Artificial Intelligence

Systematic under-counting effects are observed in data collected across many disciplines, e.g., epidemiology and ecology. Under-counted tensor completion (UC-TC) is well-motivated for many data analytics tasks, e.g., inferring the case numbers of infectious diseases at unobserved locations from under-counted case numbers in neighboring regions. However, existing methods for similar problems often lack supports in theory, making it hard to understand the underlying principles and conditions beyond empirical successes. In this work, a low-rank Poisson tensor model with an expressive unknown nonlinear side information extractor is proposed for under-counted multi-aspect data. A joint low-rank tensor completion and neural network learning algorithm is designed to recover the model. Moreover, the UC-TC formulation is supported by theoretical analysis showing that the fully counted entries of the tensor and each entry's under-counting probability can be provably recovered from partial observations -- under reasonable conditions. To our best knowledge, the result is the first to offer theoretical supports for under-counted multi-aspect data completion. Simulations and real-data experiments corroborate the theoretical claims.


Training fMRI Classifiers to Detect Cognitive States across Multiple Human Subjects

Neural Information Processing Systems

We consider learning to classify cognitive states of human subjects, based on their brain activity observed via functional Magnetic Resonance Imaging (fMRI). This problem is important because such classifiers constitute "virtual sensors" of hidden cognitive states, which may be useful in cognitive science research and clinical applications. In recent work, Mitchell, et al. [6,7,9] have demonstrated the feasibility of training such classifiers for individual human subjects (e.g., to distinguish whether the subject is reading an ambiguous or unambiguous sentence, or whether they are reading a noun or a verb). Here we extend that line of research, exploring how to train classifiers that can be applied across multiple human subjects, including subjects who were not involved in training the classifier. We describe the design of several machine learning approaches to training multiple-subject classifiers, and report experimental results demonstrating the success of these methods in learning cross-subject classifiers for two different fMRI data sets.


Training fMRI Classifiers to Detect Cognitive States across Multiple Human Subjects

Neural Information Processing Systems

We consider learning to classify cognitive states of human subjects, based on their brain activity observed via functional Magnetic Resonance Imaging (fMRI). This problem is important because such classifiers constitute "virtualsensors" of hidden cognitive states, which may be useful in cognitive science research and clinical applications. In recent work, Mitchell, et al. [6,7,9] have demonstrated the feasibility of training such classifiers for individual human subjects (e.g., to distinguish whether the subject is reading an ambiguous or unambiguous sentence, or whether they are reading a noun or a verb). Here we extend that line of research, exploring how to train classifiers that can be applied across multiple human subjects,including subjects who were not involved in training the classifier. We describe the design of several machine learning approaches to training multiple-subject classifiers, and report experimental results demonstrating the success of these methods in learning cross-subject classifiers for two different fMRI data sets.