Hussein, Ahmed Refaey
Closing the Responsibility Gap in AI-based Network Management: An Intelligent Audit System Approach
Figetakis, Emanuel, Hussein, Ahmed Refaey
Existing network paradigms have achieved lower downtime as well as a higher Quality of Experience (QoE) through the use of Artificial Intelligence (AI)-based network management tools. These AI management systems, allow for automatic responses to changes in network conditions, lowering operation costs for operators, and improving overall performance. While adopting AI-based management tools enhance the overall network performance, it also introduce challenges such as removing human supervision, privacy violations, algorithmic bias, and model inaccuracies. Furthermore, AI-based agents that fail to address these challenges should be culpable themselves rather than the network as a whole. To address this accountability gap, a framework consisting of a Deep Reinforcement Learning (DRL) model and a Machine Learning (ML) model is proposed to identify and assign numerical values of responsibility to the AI-based management agents involved in any decision-making regarding the network conditions, which eventually affects the end-user. A simulation environment was created for the framework to be trained using simulated network operation parameters. The DRL model had a 96% accuracy during testing for identifying the AI-based management agents, while the ML model using gradient descent learned the network conditions at an 83% accuracy during testing.
Zero-touch realization of Pervasive Artificial Intelligence-as-a-service in 6G networks
Baccour, Emna, Allahham, Mhd Saria, Erbad, Aiman, Mohamed, Amr, Hussein, Ahmed Refaey, Hamdi, Mounir
The vision of the upcoming 6G technologies, characterized by ultra-dense network, low latency, and fast data rate is to support Pervasive AI (PAI) using zero-touch solutions enabling self-X (e.g., self-configuration, self-monitoring, and self-healing) services. However, the research on 6G is still in its infancy, and only the first steps have been taken to conceptualize its design, investigate its implementation, and plan for use cases. Toward this end, academia and industry communities have gradually shifted from theoretical studies of AI distribution to real-world deployment and standardization. Still, designing an end-to-end framework that systematizes the AI distribution by allowing easier access to the service using a third-party application assisted by a zero-touch service provisioning has not been well explored. In this context, we introduce a novel platform architecture to deploy a zero-touch PAI-as-a-Service (PAIaaS) in 6G networks supported by a blockchain-based smart system. This platform aims to standardize the pervasive AI at all levels of the architecture and unify the interfaces in order to facilitate the service deployment across application and infrastructure domains, relieve the users worries about cost, security, and resource allocation, and at the same time, respect the 6G stringent performance requirements. As a proof of concept, we present a Federated Learning-as-a-service use case where we evaluate the ability of our proposed system to self-optimize and self-adapt to the dynamics of 6G networks in addition to minimizing the users' perceived costs.