Goto

Collaborating Authors

 Huh, Jaesung


Character-aware audio-visual subtitling in context

arXiv.org Artificial Intelligence

This paper presents an improved framework for character-aware audio-visual subtitling in TV shows. Our approach integrates speech recognition, speaker diarisation, and character recognition, utilising both audio and visual cues. This holistic solution addresses what is said, when it's said, and who is speaking, providing a more comprehensive and accurate character-aware subtitling for TV shows. Our approach brings improvements on two fronts: first, we show that audio-visual synchronisation can be used to pick out the talking face amongst others present in a video clip, and assign an identity to the corresponding speech segment. This audio-visual approach improves recognition accuracy and yield over current methods. Second, we show that the speaker of short segments can be determined by using the temporal context of the dialogue within a scene. We propose an approach using local voice embeddings of the audio, and large language model reasoning on the text transcription. This overcomes a limitation of existing methods that they are unable to accurately assign speakers to short temporal segments. We validate the method on a dataset with 12 TV shows, demonstrating superior performance in speaker diarisation and character recognition accuracy compared to existing approaches. Project page : https://www.robots.ox.ac.uk/~vgg/research/llr-context/


The VoxCeleb Speaker Recognition Challenge: A Retrospective

arXiv.org Artificial Intelligence

The VoxCeleb Speaker Recognition Challenges (VoxSRC) were a series of challenges and workshops that ran annually from 2019 to 2023. The challenges primarily evaluated the tasks of speaker recognition and diarisation under various settings including: closed and open training data; as well as supervised, self-supervised, and semi-supervised training for domain adaptation. The challenges also provided publicly available training and evaluation datasets for each task and setting, with new test sets released each year. In this paper, we provide a review of these challenges that covers: what they explored; the methods developed by the challenge participants and how these evolved; and also the current state of the field for speaker verification and diarisation. We chart the progress in performance over the five installments of the challenge on a common evaluation dataset and provide a detailed analysis of how each year's special focus affected participants' performance. This paper is aimed both at researchers who want an overview of the speaker recognition and diarisation field, and also at challenge organisers who want to benefit from the successes and avoid the mistakes of the VoxSRC challenges. We end with a discussion of the current strengths of the field and open challenges. Project page : https://mm.kaist.ac.kr/datasets/voxceleb/voxsrc/workshop.html


OxfordVGG Submission to the EGO4D AV Transcription Challenge

arXiv.org Artificial Intelligence

This report presents the technical details of our submission on the EGO4D Audio-Visual (AV) Automatic Speech Recognition Challenge 2023 from the OxfordVGG team. We present WhisperX, a system for efficient speech transcription of long-form audio with word-level time alignment, along with two text normalisers which are publicly available. Our final submission obtained 56.0% of the Word Error Rate (WER) on the challenge test set, ranked 1st on the leaderboard. All baseline codes and models are available on https://github.com/m-bain/whisperX.


VoxSRC 2022: The Fourth VoxCeleb Speaker Recognition Challenge

arXiv.org Artificial Intelligence

This paper summarises the findings from the VoxCeleb Speaker Recognition Challenge 2022 (VoxSRC-22), which was held in conjunction with INTERSPEECH 2022. The goal of this challenge was to evaluate how well state-of-the-art speaker recognition systems can diarise and recognise speakers from speech obtained "in the wild". The challenge consisted of: (i) the provision of publicly available speaker recognition and diarisation data from YouTube videos together with ground truth annotation and standardised evaluation software; and (ii) a public challenge and hybrid workshop held at INTERSPEECH 2022. We describe the four tracks of our challenge along with the baselines, methods, and results. We conclude with a discussion on the new domain-transfer focus of VoxSRC-22, and on the progression of the challenge from the previous three editions.


Epic-Sounds: A Large-scale Dataset of Actions That Sound

arXiv.org Artificial Intelligence

We introduce EPIC-SOUNDS, a large-scale dataset of audio annotations capturing temporal extents and class labels within the audio stream of the egocentric videos. We propose an annotation pipeline where annotators temporally label distinguishable audio segments and describe the action that could have caused this sound. We identify actions that can be discriminated purely from audio, through grouping these free-form descriptions of audio into classes. For actions that involve objects colliding, we collect human annotations of the materials of these objects (e.g. a glass object being placed on a wooden surface), which we verify from visual labels, discarding ambiguities. Overall, EPIC-SOUNDS includes 78.4k categorised segments of audible events and actions, distributed across 44 classes as well as 39.2k non-categorised segments. We train and evaluate two state-of-the-art audio recognition models on our dataset, highlighting the importance of audio-only labels and the limitations of current models to recognise actions that sound.


In search of strong embedding extractors for speaker diarisation

arXiv.org Artificial Intelligence

Speaker embedding extractors (EEs), which map input audio to a speaker discriminant latent space, are of paramount importance in speaker diarisation. However, there are several challenges when adopting EEs for diarisation, from which we tackle two key problems. First, the evaluation is not straightforward because the features required for better performance differ between speaker verification and diarisation. We show that better performance on widely adopted speaker verification evaluation protocols does not lead to better diarisation performance. Second, embedding extractors have not seen utterances in which multiple speakers exist. These inputs are inevitably present in speaker diarisation because of overlapped speech and speaker changes; they degrade the performance. To mitigate the first problem, we generate speaker verification evaluation protocols that mimic the diarisation scenario better. We propose two data augmentation techniques to alleviate the second problem, making embedding extractors aware of overlapped speech or speaker change input. One technique generates overlapped speech segments, and the other generates segments where two speakers utter sequentially. Extensive experimental results using three state-of-the-art speaker embedding extractors demonstrate that both proposed approaches are effective.


Phase-aware Speech Enhancement with Deep Complex U-Net

arXiv.org Machine Learning

Most deep learning-based models for speech enhancement have mainly focused on estimating the magnitude of spectrogram while reusing the phase from noisy speech for reconstruction. This is due to the difficulty of estimating the phase of clean speech. To improve speech enhancement performance, we tackle the phase estimation problem in three ways. First, we propose Deep Complex U-Net, an advanced U-Net structured model incorporating well-defined complex-valued building blocks to deal with complex-valued spectrograms. Second, we propose a polar coordinate-wise complex-valued masking method to reflect the distribution of complex ideal ratio masks. Third, we define a novel loss function, weighted source-to-distortion ratio (wSDR) loss, which is designed to directly correlate with a quantitative evaluation measure. Our model was evaluated on a mixture of the Voice Bank corpus and DEMAND database, which has been widely used by many deep learning models for speech enhancement. Ablation experiments were conducted on the mixed dataset showing that all three proposed approaches are empirically valid. Experimental results show that the proposed method achieves state-of-the-art performance in all metrics, outperforming previous approaches by a large margin.