Not enough data to create a plot.
Try a different view from the menu above.
Hudelot, Céline
StreaMulT: Streaming Multimodal Transformer for Heterogeneous and Arbitrary Long Sequential Data
Pellegrain, Victor, Tami, Myriam, Batteux, Michel, Hudelot, Céline
The increasing complexity of Industry 4.0 systems brings new challenges regarding predictive maintenance tasks such as fault detection and diagnosis. A corresponding and realistic setting includes multi-source data streams from different modalities, such as sensors measurements time series, machine images, textual maintenance reports, etc. These heterogeneous multimodal streams also differ in their acquisition frequency, may embed temporally unaligned information and can be arbitrarily long, depending on the considered system and task. Whereas multimodal fusion has been largely studied in a static setting, to the best of our knowledge, there exists no previous work considering arbitrarily long multimodal streams alongside with related tasks such as prediction across time. Thus, in this paper, we first formalize this paradigm of heterogeneous multimodal learning in a streaming setting as a new one. To tackle this challenge, we propose StreaMulT, a Streaming Multimodal Transformer relying on cross-modal attention and on a memory bank to process arbitrarily long input sequences at training time and run in a streaming way at inference. StreaMulT improves the state-of-the-art metrics on CMU-MOSEI dataset for Multimodal Sentiment Analysis task, while being able to deal with much longer inputs than other multimodal models. The conducted experiments eventually highlight the importance of the textual embedding layer, questioning recent improvements in Multimodal Sentiment Analysis benchmarks.
Improving Neural-based Classification with Logical Background Knowledge
Ledaguenel, Arthur, Hudelot, Céline, Khouadjia, Mostepha
Neurosymbolic AI is a growing field of research aiming to combine neural networks learning capabilities with the reasoning abilities of symbolic systems. This hybridization can take many shapes. In this paper, we propose a new formalism for supervised multi-label classification with propositional background knowledge. We introduce a new neurosymbolic technique called semantic conditioning at inference, which only constrains the system during inference while leaving the training unaffected. We discuss its theoritical and practical advantages over two other popular neurosymbolic techniques: semantic conditioning and semantic regularization. We develop a new multi-scale methodology to evaluate how the benefits of a neurosymbolic technique evolve with the scale of the network. We then evaluate experimentally and compare the benefits of all three techniques across model scales on several datasets. Our results demonstrate that semantic conditioning at inference can be used to build more accurate neural-based systems with fewer resources while guaranteeing the semantic consistency of outputs.
Towards Cross-Tokenizer Distillation: the Universal Logit Distillation Loss for LLMs
Boizard, Nicolas, Haddad, Kevin El, Hudelot, Céline, Colombo, Pierre
Deploying large language models (LLMs) of several billion parameters can be impractical in most industrial use cases due to constraints such as cost, latency limitations, and hardware accessibility. Knowledge distillation (KD) offers a solution by compressing knowledge from resource-intensive large models to smaller ones. Various strategies exist, some relying on the text generated by the teacher model and optionally utilizing his logits to enhance learning. However, these methods based on logits often require both teacher and student models to share the same tokenizer, limiting their applicability across different LLM families. In this paper, we introduce Universal Logit Distillation (ULD) loss, grounded in optimal transport, to address this limitation. Our experimental results demonstrate the effectiveness of ULD loss in enabling distillation across models with different architectures and tokenizers, paving the way to a more widespread use of distillation techniques.
CroissantLLM: A Truly Bilingual French-English Language Model
Faysse, Manuel, Fernandes, Patrick, Guerreiro, Nuno M., Loison, António, Alves, Duarte M., Corro, Caio, Boizard, Nicolas, Alves, João, Rei, Ricardo, Martins, Pedro H., Casademunt, Antoni Bigata, Yvon, François, Martins, André F. T., Viaud, Gautier, Hudelot, Céline, Colombo, Pierre
We introduce CroissantLLM, a 1.3B language model pretrained on a set of 3T English and French tokens, to bring to the research and industrial community a high-performance, fully open-sourced bilingual model that runs swiftly on consumer-grade local hardware. To that end, we pioneer the approach of training an intrinsically bilingual model with a 1:1 English-to-French pretraining data ratio, a custom tokenizer, and bilingual finetuning datasets. We release the training dataset, notably containing a French split with manually curated, high-quality, and varied data sources. To assess performance outside of English, we craft a novel benchmark, FrenchBench, consisting of an array of classification and generation tasks, covering various orthogonal aspects of model performance in the French Language. Additionally, rooted in transparency and to foster further Large Language Model research, we release codebases, and dozens of checkpoints across various model sizes, training data distributions, and training steps, as well as fine-tuned Chat models, and strong translation models. We evaluate our model through the FMTI framework, and validate 81 % of the transparency criteria, far beyond the scores of even most open initiatives. This work enriches the NLP landscape, breaking away from previous English-centric work in order to strengthen our understanding of multilinguality in language models.
Revisiting Instruction Fine-tuned Model Evaluation to Guide Industrial Applications
Faysse, Manuel, Viaud, Gautier, Hudelot, Céline, Colombo, Pierre
Instruction Fine-Tuning (IFT) is a powerful paradigm that strengthens the zero-shot capabilities of Large Language Models (LLMs), but in doing so induces new evaluation metric requirements. We show LLM-based metrics to be well adapted to these requirements, and leverage them to conduct an investigation of task-specialization strategies, quantifying the trade-offs that emerge in practical industrial settings. Our findings offer practitioners actionable insights for real-world IFT model deployment.
An Analysis of Initial Training Strategies for Exemplar-Free Class-Incremental Learning
Petit, Grégoire, Soumm, Michael, Feillet, Eva, Popescu, Adrian, Delezoide, Bertrand, Picard, David, Hudelot, Céline
Class-Incremental Learning (CIL) aims to build classification models from data streams. At each step of the CIL process, new classes must be integrated into the model. Due to catastrophic forgetting, CIL is particularly challenging when examples from past classes cannot be stored, the case on which we focus here. To date, most approaches are based exclusively on the target dataset of the CIL process. However, the use of models pre-trained in a self-supervised way on large amounts of data has recently gained momentum. The initial model of the CIL process may only use the first batch of the target dataset, or also use pre-trained weights obtained on an auxiliary dataset. The choice between these two initial learning strategies can significantly influence the performance of the incremental learning model, but has not yet been studied in depth. Performance is also influenced by the choice of the CIL algorithm, the neural architecture, the nature of the target task, the distribution of classes in the stream and the number of examples available for learning. We conduct a comprehensive experimental study to assess the roles of these factors. We present a statistical analysis framework that quantifies the relative contribution of each factor to incremental performance. Our main finding is that the initial training strategy is the dominant factor influencing the average incremental accuracy, but that the choice of CIL algorithm is more important in preventing forgetting. Based on this analysis, we propose practical recommendations for choosing the right initial training strategy for a given incremental learning use case. These recommendations are intended to facilitate the practical deployment of incremental learning.
Open-Set Likelihood Maximization for Few-Shot Learning
Boudiaf, Malik, Bennequin, Etienne, Tami, Myriam, Toubhans, Antoine, Piantanida, Pablo, Hudelot, Céline, Ayed, Ismail Ben
We tackle the Few-Shot Open-Set Recognition (FSOSR) problem, i.e. classifying instances among a set of classes for which we only have a few labeled samples, while simultaneously detecting instances that do not belong to any known class. We explore the popular transductive setting, which leverages the unlabelled query instances at inference. Motivated by the observation that existing transductive methods perform poorly in open-set scenarios, we propose a generalization of the maximum likelihood principle, in which latent scores down-weighing the influence of potential outliers are introduced alongside the usual parametric model. Our formulation embeds supervision constraints from the support set and additional penalties discouraging overconfident predictions on the query set. We proceed with a block-coordinate descent, with the latent scores and parametric model co-optimized alternately, thereby benefiting from each other. We call our resulting formulation \textit{Open-Set Likelihood Optimization} (OSLO). OSLO is interpretable and fully modular; it can be applied on top of any pre-trained model seamlessly. Through extensive experiments, we show that our method surpasses existing inductive and transductive methods on both aspects of open-set recognition, namely inlier classification and outlier detection.
Improving Next-Application Prediction with Deep Personalized-Attention Neural Network
Zhu, Jun, Viaud, Gautier, Hudelot, Céline
Recently, due to the ubiquity and supremacy of E-recruitment platforms, job recommender systems have been largely studied. In this paper, we tackle the next job application problem, which has many practical applications. In particular, we propose to leverage next-item recommendation approaches to consider better the job seeker's career preference to discover the next relevant job postings (referred to jobs for short) they might apply for. Our proposed model, named Personalized-Attention Next-Application Prediction (PANAP), is composed of three modules. The first module learns job representations from textual content and metadata attributes in an unsupervised way. The second module learns job seeker representations. It includes a personalized-attention mechanism that can adapt the importance of each job in the learned career preference representation to the specific job seeker's profile. The attention mechanism also brings some interpretability to learned representations. Then, the third module models the Next-Application Prediction task as a top-K search process based on the similarity of representations. In addition, the geographic location is an essential factor that affects the preferences of job seekers in the recruitment domain. Therefore, we explore the influence of geographic location on the model performance from the perspective of negative sampling strategies. Experiments on the public CareerBuilder12 dataset show the interest in our approach.
Demystifying Drug Repurposing Domain Comprehension with Knowledge Graph Embedding
Ramalli, Edoardo, Parravicini, Alberto, Di Donato, Guido Walter, Salaris, Mirko, Hudelot, Céline, Santambrogio, Marco Domenico
Drug repurposing is more relevant than ever due to drug development's rising costs and the need to respond to emerging diseases quickly. Knowledge graph embedding enables drug repurposing using heterogeneous data sources combined with state-of-the-art machine learning models to predict new drug-disease links in the knowledge graph. As in many machine learning applications, significant work is still required to understand the predictive models' behavior. We propose a structured methodology to understand better machine learning models' results for drug repurposing, suggesting key elements of the knowledge graph to improve predictions while saving computational resources. We reduce the training set of 11.05% and the embedding space by 31.87%, with only a 2% accuracy reduction, and increase accuracy by 60% on the open ogbl-biokg graph adding only 1.53% new triples.
An Overview of Deep Semi-Supervised Learning
Ouali, Yassine, Hudelot, Céline, Tami, Myriam
Deep neural networks demonstrated their ability to provide remarkable performances on a wide range of supervised learning tasks (e.g., image classification) when trained on extensive collections of labeled data (e.g., ImageNet). However, creating such large datasets requires a considerable amount of resources, time, and effort. Such resources may not be available in many practical cases, limiting the adoption and the application of many deep learning methods. In a search for more data-efficient deep learning methods to overcome the need for large annotated datasets, there is a rising research interest in semi-supervised learning and its applications to deep neural networks to reduce the amount of labeled data required, by either developing novel methods or adopting existing semi-supervised learning frameworks for a deep learning setting. In this paper, we provide a comprehensive overview of deep semi-supervised learning, starting with an introduction to the field, followed by a summarization of the dominant semi-supervised approaches in deep learning.