Huang, Ziqi
Vchitect-2.0: Parallel Transformer for Scaling Up Video Diffusion Models
Fan, Weichen, Si, Chenyang, Song, Junhao, Yang, Zhenyu, He, Yinan, Zhuo, Long, Huang, Ziqi, Dong, Ziyue, He, Jingwen, Pan, Dongwei, Wang, Yi, Jiang, Yuming, Wang, Yaohui, Gao, Peng, Chen, Xinyuan, Li, Hengjie, Lin, Dahua, Qiao, Yu, Liu, Ziwei
We present Vchitect-2.0, a parallel transformer architecture designed to scale up video diffusion models for large-scale text-to-video generation. The overall Vchitect-2.0 system has several key designs. (1) By introducing a novel Multimodal Diffusion Block, our approach achieves consistent alignment between text descriptions and generated video frames, while maintaining temporal coherence across sequences. (2) To overcome memory and computational bottlenecks, we propose a Memory-efficient Training framework that incorporates hybrid parallelism and other memory reduction techniques, enabling efficient training of long video sequences on distributed systems. (3) Additionally, our enhanced data processing pipeline ensures the creation of Vchitect T2V DataVerse, a high-quality million-scale training dataset through rigorous annotation and aesthetic evaluation. Extensive benchmarking demonstrates that Vchitect-2.0 outperforms existing methods in video quality, training efficiency, and scalability, serving as a suitable base for high-fidelity video generation.
Evaluation Agent: Efficient and Promptable Evaluation Framework for Visual Generative Models
Zhang, Fan, Tian, Shulin, Huang, Ziqi, Qiao, Yu, Liu, Ziwei
Recent advancements in visual generative models have enabled high-quality image and video generation, opening diverse applications. However, evaluating these models often demands sampling hundreds or thousands of images or videos, making the process computationally expensive, especially for diffusion-based models with inherently slow sampling. Moreover, existing evaluation methods rely on rigid pipelines that overlook specific user needs and provide numerical results without clear explanations. In contrast, humans can quickly form impressions of a model's capabilities by observing only a few samples. To mimic this, we propose the Evaluation Agent framework, which employs human-like strategies for efficient, dynamic, multi-round evaluations using only a few samples per round, while offering detailed, user-tailored analyses. It offers four key advantages: 1) efficiency, 2) promptable evaluation tailored to diverse user needs, 3) explainability beyond single numerical scores, and 4) scalability across various models and tools. Experiments show that Evaluation Agent reduces evaluation time to 10% of traditional methods while delivering comparable results. The Evaluation Agent framework is fully open-sourced to advance research in visual generative models and their efficient evaluation.
Literal-Aware Knowledge Graph Embedding for Welding Quality Monitoring: A Bosch Case
Tan, Zhipeng, Zhou, Baifan, Zheng, Zhuoxun, Savkovic, Ognjen, Huang, Ziqi, Gonzalez, Irlan-Grangel, Soylu, Ahmet, Kharlamov, Evgeny
Recently there has been a series of studies in knowledge graph embedding (KGE), which attempts to learn the embeddings of the entities and relations as numerical vectors and mathematical mappings via machine learning (ML). However, there has been limited research that applies KGE for industrial problems in manufacturing. This paper investigates whether and to what extent KGE can be used for an important problem: quality monitoring for welding in manufacturing industry, which is an impactful process accounting for production of millions of cars annually. The work is in line with Bosch research of data-driven solutions that intends to replace the traditional way of destroying cars, which is extremely costly and produces waste. The paper tackles two very challenging questions simultaneously: how large the welding spot diameter is; and to which car body the welded spot belongs to. The problem setting is difficult for traditional ML because there exist a high number of car bodies that should be assigned as class labels. We formulate the problem as link prediction, and experimented popular KGE methods on real industry data, with consideration of literals. Our results reveal both limitations and promising aspects of adapted KGE methods.