Goto

Collaborating Authors

 Huang, Yuzhong


Hybrid Forecasting of Geopolitical Events

arXiv.org Artificial Intelligence

Sound decision-making relies on accurate prediction for tangible outcomes ranging from military conflict to disease outbreaks. To improve crowdsourced forecasting accuracy, we developed SAGE, a hybrid forecasting system that combines human and machine generated forecasts. The system provides a platform where users can interact with machine models and thus anchor their judgments on an objective benchmark. The system also aggregates human and machine forecasts weighting both for propinquity and based on assessed skill while adjusting for overconfidence. We present results from the Hybrid Forecasting Competition (HFC) - larger than comparable forecasting tournaments - including 1085 users forecasting 398 real-world forecasting problems over eight months. Our main result is that the hybrid system generated more accurate forecasts compared to a human-only baseline which had no machine generated predictions. We found that skilled forecasters who had access to machine-generated forecasts outperformed those who only viewed historical data. We also demonstrated the inclusion of machine-generated forecasts in our aggregation algorithms improved performance, both in terms of accuracy and scalability. This suggests that hybrid forecasting systems, which potentially require fewer human resources, can be a viable approach for maintaining a competitive level of accuracy over a larger number of forecasting questions.


The Unequal Opportunities of Large Language Models: Revealing Demographic Bias through Job Recommendations

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have seen widespread deployment in various real-world applications. Understanding these biases is crucial to comprehend the potential downstream consequences when using LLMs to make decisions, particularly for historically disadvantaged groups. In this work, we propose a simple method for analyzing and comparing demographic bias in LLMs, through the lens of job recommendations. We demonstrate the effectiveness of our method by measuring intersectional biases within ChatGPT and LLaMA, two cutting-edge LLMs. Our experiments primarily focus on uncovering gender identity and nationality bias; however, our method can be extended to examine biases associated with any intersection of demographic identities. We identify distinct biases in both models toward various demographic identities, such as both models consistently suggesting low-paying jobs for Mexican workers or preferring to recommend secretarial roles to women. Our study highlights the importance of measuring the bias of LLMs in downstream applications to understand the potential for harm and inequitable outcomes.


Statistical Equity: A Fairness Classification Objective

arXiv.org Artificial Intelligence

Machine learning systems have been shown to propagate the societal errors of the past. In light of this, a wealth of research focuses on designing solutions that are "fair." Even with this abundance of work, there is no singular definition of fairness, mainly because fairness is subjective and context dependent. We propose a new fairness definition, motivated by the principle of equity, that considers existing biases in the data and attempts to make equitable decisions that account for these previous historical biases. We formalize our definition of fairness, and motivate it with its appropriate contexts. Next, we operationalize it for equitable classification. We perform multiple automatic and human evaluations to show the effectiveness of our definition and demonstrate its utility for aspects of fairness, such as the feedback loop.


InteriorNet: Mega-scale Multi-sensor Photo-realistic Indoor Scenes Dataset

arXiv.org Artificial Intelligence

Datasets have gained an enormous amount of popularity in the computer vision community, from training and evaluation of Deep Learning-based methods to benchmarking Simultaneous Localization and Mapping (SLAM). Without a doubt, synthetic imagery bears a vast potential due to scalability in terms of amounts of data obtainable without tedious manual ground truth annotations or measurements. Here, we present a dataset with the aim of providing a higher degree of photo-realism, larger scale, more variability as well as serving a wider range of purposes compared to existing datasets. Our dataset leverages the availability of millions of professional interior designs and millions of production-level furniture and object assets -- all coming with fine geometric details and high-resolution texture. We render high-resolution and high frame-rate video sequences following realistic trajectories while supporting various camera types as well as providing inertial measurements. Together with the release of the dataset, we will make executable program of our interactive simulator software as well as our renderer available at https://interiornetdataset.github.io. To showcase the usability and uniqueness of our dataset, we show benchmarking results of both sparse and dense SLAM algorithms.


On Extended Long Short-term Memory and Dependent Bidirectional Recurrent Neural Network

arXiv.org Machine Learning

In this work, we investigate the memory capability of recurrent neural networks (RNNs), where this capability is defined as a function that maps an element in a sequence to the current output. We first analyze the system function of a recurrent neural network (RNN) cell, and provide analytical results for three RNNs. They are the simple recurrent neural network (SRN), the long short-term memory (LSTM), and the gated recurrent unit (GRU). Based on the analysis, we propose a new design to extend the memory length of a cell, and call it the extended long short-term memory (ELSTM). Next, we present a dependent bidirectional recurrent neural network (DBRNN) for the sequence-in-sequence-out (SISO) problem, which is more robust to previous erroneous predictions. Extensive experiments are carried out on different language tasks to demonstrate the superiority of our proposed ELSTM and DBRNN solutions.