Not enough data to create a plot.
Try a different view from the menu above.
Huang, Yuming
SafeCast: Risk-Responsive Motion Forecasting for Autonomous Vehicles
Liao, Haicheng, Kong, Hanlin, Rao, Bin, Wang, Bonan, Wang, Chengyue, Yu, Guyang, Huang, Yuming, Tang, Ruru, Xu, Chengzhong, Li, Zhenning
Accurate motion forecasting is essential for the safety and reliability of autonomous driving (AD) systems. While existing methods have made significant progress, they often overlook explicit safety constraints and struggle to capture the complex interactions among traffic agents, environmental factors, and motion dynamics. To address these challenges, we present SafeCast, a risk-responsive motion forecasting model that integrates safety-aware decision-making with uncertainty-aware adaptability. SafeCast is the first to incorporate the Responsibility-Sensitive Safety (RSS) framework into motion forecasting, encoding interpretable safety rules--such as safe distances and collision avoidance--based on traffic norms and physical principles. To further enhance robustness, we introduce the Graph Uncertainty Feature (GUF), a graph-based module that injects learnable noise into Graph Attention Networks, capturing real-world uncertainties and enhancing generalization across diverse scenarios. We evaluate SafeCast on four real-world benchmark datasets--Next Generation Simulation (NGSIM), Highway Drone (HighD), ApolloScape, and the Macao Connected Autonomous Driving (MoCAD)--covering highway, urban, and mixed-autonomy traffic environments. Our model achieves state-of-the-art (SOTA) accuracy while maintaining a lightweight architecture and low inference latency, underscoring its potential for real-time deployment in safety-critical AD systems.
Learning Orientation Field for OSM-Guided Autonomous Navigation
Huang, Yuming, Gao, Wei, Zhang, Zhiyuan, Ghaffari, Maani, Song, Dezhen, Xu, Cheng-Zhong, Kong, Hui
OpenStreetMap (OSM) has gained popularity recently in autonomous navigation due to its public accessibility, lower maintenance costs, and broader geographical coverage. However, existing methods often struggle with noisy OSM data and incomplete sensor observations, leading to inaccuracies in trajectory planning. These challenges are particularly evident in complex driving scenarios, such as at intersections or facing occlusions. To address these challenges, we propose a robust and explainable two-stage framework to learn an Orientation Field (OrField) for robot navigation by integrating LiDAR scans and OSM routes. In the first stage, we introduce the novel representation, OrField, which can provide orientations for each grid on the map, reasoning jointly from noisy LiDAR scans and OSM routes. To generate a robust OrField, we train a deep neural network by encoding a versatile initial OrField and output an optimized OrField. Based on OrField, we propose two trajectory planners for OSM-guided robot navigation, called Field-RRT* and Field-Bezier, respectively, in the second stage by improving the Rapidly Exploring Random Tree (RRT) algorithm and Bezier curve to estimate the trajectories. Thanks to the robustness of OrField which captures both global and local information, Field-RRT* and Field-Bezier can generate accurate and reliable trajectories even in challenging conditions. We validate our approach through experiments on the SemanticKITTI dataset and our own campus dataset. The results demonstrate the effectiveness of our method, achieving superior performance in complex and noisy conditions. Our code for network training and real-world deployment is available at https://github.com/IMRL/OriField.
Co-Optimization of Tool Orientations, Kinematic Redundancy, and Waypoint Timing for Robot-Assisted Manufacturing
Chen, Yongxue, Zhang, Tianyu, Huang, Yuming, Liu, Tao, Wang, Charlie C. L.
In this paper, we present a concurrent and scalable trajectory optimization method to improve the quality of robot-assisted manufacturing. Our method simultaneously optimizes tool orientations, kinematic redundancy, and waypoint timing on input toolpaths with large numbers of waypoints to improve kinematic smoothness while incorporating manufacturing constraints. Differently, existing methods always determine them in a decoupled manner. To deal with the large number of waypoints on a toolpath, we propose a decomposition-based numerical scheme to optimize the trajectory in an out-of-core manner, which can also run in parallel to improve the efficiency. Simulations and physical experiments have been conducted to demonstrate the performance of our method in examples of robot-assisted additive manufacturing.
Less is More: Efficient Brain-Inspired Learning for Autonomous Driving Trajectory Prediction
Liao, Haicheng, Li, Yongkang, Li, Zhenning, Wang, Chengyue, Tian, Chunlin, Huang, Yuming, Bian, Zilin, Zhu, Kaiqun, Li, Guofa, Pu, Ziyuan, Hu, Jia, Cui, Zhiyong, Xu, Chengzhong
Accurately and safely predicting the trajectories of surrounding vehicles is essential for fully realizing autonomous driving (AD). This paper presents the Human-Like Trajectory Prediction model (HLTP++), which emulates human cognitive processes to improve trajectory prediction in AD. HLTP++ incorporates a novel teacher-student knowledge distillation framework. The "teacher" model equipped with an adaptive visual sector, mimics the dynamic allocation of attention human drivers exhibit based on factors like spatial orientation, proximity, and driving speed. On the other hand, the "student" model focuses on real-time interaction and human decision-making, drawing parallels to the human memory storage mechanism. Furthermore, we improve the model's efficiency by introducing a new Fourier Adaptive Spike Neural Network (FA-SNN), allowing for faster and more precise predictions with fewer parameters. Evaluated using the NGSIM, HighD, and MoCAD benchmarks, HLTP++ demonstrates superior performance compared to existing models, which reduces the predicted trajectory error with over 11% on the NGSIM dataset and 25% on the HighD datasets. Moreover, HLTP++ demonstrates strong adaptability in challenging environments with incomplete input data. This marks a significant stride in the journey towards fully AD systems.
RoMo-HER: Robust Model-based Hindsight Experience Replay
Huang, Yuming, Ren, Bin
Sparse rewards are one of the factors leading to low sample efficiency in multi-goal reinforcement learning (RL). Based on Hindsight Experience Replay (HER), model-based relabeling methods have been proposed to relabel goals using virtual trajectories obtained by interacting with the trained model, which can effectively enhance the sample efficiency in accurately modelable sparse-reward environments. However, they are ineffective in robot manipulation environment. In our paper, we design a robust framework called Robust Model-based Hindsight Experience Replay (RoMo-HER) which can effectively utilize the dynamical model in robot manipulation environments to enhance the sample efficiency. RoMo-HER is built upon a dynamics model and a novel goal relabeling technique called Foresight relabeling (FR), which selects the prediction starting state with a specific strategy, predicts the future trajectory of the starting state, and then relabels the goal using the dynamics model and the latest policy to train the agent. Experimental results show that RoMo-HER has higher sample efficiency than HER and Model-based Hindsight Experience Replay in several simulated robot manipulation environments. Furthermore, we integrate RoMo-HER and Relay Hindsight Experience Replay (RHER), which currently exhibits the highest sampling efficiency in most benchmark environments, resulting in a novel approach called Robust Model-based Relay Hindsight Experience Replay (RoMo-RHER). Our experimental results demonstrate that RoMo-RHER achieves higher sample efficiency over RHER, outperforming RHER by 25% and 26% in FetchPush-v1 and FetchPickandPlace-v1, respectively.
Why semantics matters: A deep study on semantic particle-filtering localization in a LiDAR semantic pole-map
Huang, Yuming, Gu, Yi, Xu, Chengzhong, Kong, Hui
In most urban and suburban areas, pole-like structures such as tree trunks or utility poles are ubiquitous. These structural landmarks are very useful for the localization of autonomous vehicles given their geometrical locations in maps and measurements from sensors. In this work, we aim at creating an accurate map for autonomous vehicles or robots with pole-like structures as the dominant localization landmarks, hence called pole-map. In contrast to the previous pole-based mapping or localization methods, we exploit the semantics of pole-like structures. Specifically, semantic segmentation is achieved by a new mask-range transformer network in a mask-classfication paradigm. With the semantics extracted for the pole-like structures in each frame, a multi-layer semantic pole-map is created by aggregating the detected pole-like structures from all frames. Given the semantic pole-map, we propose a semantic particle-filtering localization scheme for vehicle localization. Theoretically, we have analyzed why the semantic information can benefit the particle-filter localization, and empirically it is validated on the public SemanticKITTI dataset that the particle-filtering localization with semantics achieves much better performance than the counterpart without semantics when each particle's odometry prediction and/or the online observation is subject to uncertainties at significant levels.
Support Generation for Robot-Assisted 3D Printing with Curved Layers
Zhang, Tianyu, Huang, Yuming, Kukulski, Piotr, Dutta, Neelotpal, Fang, Guoxin, Wang, Charlie C. L.
Robot-assisted 3D printing has drawn a lot of attention by its capability to fabricate curved layers that are optimized according to different objectives. However, the support generation algorithm based on a fixed printing direction for planar layers cannot be directly applied for curved layers as the orientation of material accumulation is dynamically varied. In this paper, we propose a skeleton-based support generation method for robot-assisted 3D printing with curved layers. The support is represented as an implicit solid so that the problems of numerical robustness can be effectively avoided. The effectiveness of our algorithm is verified on a dual-material printing platform that consists of a robotic arm and a newly designed dual-material extruder. Experiments have been successfully conducted on our system to fabricate a variety of freeform models.
INTERN: A New Learning Paradigm Towards General Vision
Shao, Jing, Chen, Siyu, Li, Yangguang, Wang, Kun, Yin, Zhenfei, He, Yinan, Teng, Jianing, Sun, Qinghong, Gao, Mengya, Liu, Jihao, Huang, Gengshi, Song, Guanglu, Wu, Yichao, Huang, Yuming, Liu, Fenggang, Peng, Huan, Qin, Shuo, Wang, Chengyu, Wang, Yujie, He, Conghui, Liang, Ding, Liu, Yu, Yu, Fengwei, Yan, Junjie, Lin, Dahua, Wang, Xiaogang, Qiao, Yu
Enormous waves of technological innovations over the past several years, marked by the advances in AI technologies, are profoundly reshaping the industry and the society. However, down the road, a key challenge awaits us, that is, our capability of meeting rapidly-growing scenario-specific demands is severely limited by the cost of acquiring a commensurate amount of training data. This difficult situation is in essence due to limitations of the mainstream learning paradigm: we need to train a new model for each new scenario, based on a large quantity of well-annotated data and commonly from scratch. In tackling this fundamental problem, we move beyond and develop a new learning paradigm named INTERN. By learning with supervisory signals from multiple sources in multiple stages, the model being trained will develop strong generalizability. We evaluate our model on 26 well-known datasets that cover four categories of tasks in computer vision. In most cases, our models, adapted with only 10% of the training data in the target domain, outperform the counterparts trained with the full set of data, often by a significant margin. This is an important step towards a promising prospect where such a model with general vision capability can dramatically reduce our reliance on data, thus expediting the adoption of AI technologies. Furthermore, revolving around our new paradigm, we also introduce a new data system, a new architecture, and a new benchmark, which, together, form a general vision ecosystem to support its future development in an open and inclusive manner.
Deep Adversarial Belief Networks
Huang, Yuming, Panahi, Ashkan, Krim, Hamid, Yu, Yiyi, Smith, Spencer L.
We present a novel adversarial framework for training deep belief networks (DBNs), which includes replacing the generator network in the methodology of generative adversarial networks (GANs) with a DBN and developing a highly parallelizable numerical algorithm for training the resulting architecture in a stochastic manner. Unlike the existing techniques, this framework can be applied to the most general form of DBNs with no requirement for back propagation. As such, it lays a new foundation for developing DBNs on a par with GANs with various regularization units, such as pooling and normalization. Foregoing back-propagation, our framework also exhibits superior scalability as compared to other DBN and GAN learning techniques. We present a number of numerical experiments in computer vision as well as neurosciences to illustrate the main advantages of our approach.