Goto

Collaborating Authors

 Huang, Yimin


P4GCN: Vertical Federated Social Recommendation with Privacy-Preserving Two-Party Graph Convolution Networks

arXiv.org Artificial Intelligence

In recent years, graph neural networks (GNNs) have been commonly utilized for social recommendation systems. However, real-world scenarios often present challenges related to user privacy and business constraints, inhibiting direct access to valuable social information from other platforms. While many existing methods have tackled matrix factorization-based social recommendations without direct social data access, developing GNN-based federated social recommendation models under similar conditions remains largely unexplored. To address this issue, we propose a novel vertical federated social recommendation method leveraging privacy-preserving two-party graph convolution networks (P4GCN) to enhance recommendation accuracy without requiring direct access to sensitive social information. First, we introduce a Sandwich-Encryption module to ensure comprehensive data privacy during the collaborative computing process. Second, we provide a thorough theoretical analysis of the privacy guarantees, considering the participation of both curious and honest parties. Extensive experiments on four real-world datasets demonstrate that P4GCN outperforms state-of-the-art methods in terms of recommendation accuracy. The code is available at https://github.com/WwZzz/P4GCN.


Machine Learning Insides OptVerse AI Solver: Design Principles and Applications

arXiv.org Artificial Intelligence

In an era of digital ubiquity, efficient resource management and decision-making are paramount across numerous industries. To this end, we present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI Solver, which aims to mitigate the scarcity of real-world mathematical programming instances, and to surpass the capabilities of traditional optimization techniques. We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem. Furthermore, we introduce a training framework leveraging augmentation policies to maintain solvers' utility in dynamic environments. Besides the data generation and augmentation, our proposed approaches also include novel ML-driven policies for personalized solver strategies, with an emphasis on applications like graph convolutional networks for initial basis selection and reinforcement learning for advanced presolving and cut selection. Additionally, we detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance. Compared with traditional solvers such as Cplex and SCIP, our ML-augmented OptVerse AI Solver demonstrates superior speed and precision across both established benchmarks and real-world scenarios, reinforcing the practical imperative and effectiveness of machine learning techniques in mathematical programming solvers.


A Lipschitz Bandits Approach for Continuous Hyperparameter Optimization

arXiv.org Artificial Intelligence

One of the most critical problems in machine learning is HyperParameter Optimization (HPO), since choice of hyperparameters has a significant impact on final model performance. Although there are many HPO algorithms, they either have no theoretical guarantees or require strong assumptions. To this end, we introduce BLiE -- a Lipschitz-bandit-based algorithm for HPO that only assumes Lipschitz continuity of the objective function. BLiE exploits the landscape of the objective function to adaptively search over the hyperparameter space. Theoretically, we show that $(i)$ BLiE finds an $\epsilon$-optimal hyperparameter with $\mathcal{O} \left( \epsilon^{-(d_z + \beta)}\right)$ total budgets, where $d_z$ and $\beta$ are problem intrinsic; $(ii)$ BLiE is highly parallelizable. Empirically, we demonstrate that BLiE outperforms the state-of-the-art HPO algorithms on benchmark tasks. We also apply BLiE to search for noise schedule of diffusion models. Comparison with the default schedule shows that BLiE schedule greatly improves the sampling speed.


EFMVFL: An Efficient and Flexible Multi-party Vertical Federated Learning without a Third Party

arXiv.org Artificial Intelligence

Federated learning allows multiple participants to conduct joint modeling without disclosing their local data. Vertical federated learning (VFL) handles the situation where participants share the same ID space and different feature spaces. In most VFL frameworks, to protect the security and privacy of the participants' local data, a third party is needed to generate homomorphic encryption key pairs and perform decryption operations. In this way, the third party is granted the right to decrypt information related to model parameters. However, it isn't easy to find such a credible entity in the real world. Existing methods for solving this problem are either communication-intensive or unsuitable for multi-party scenarios. By combining secret sharing and homomorphic encryption, we propose a novel VFL framework without a third party called EFMVFL, which supports flexible expansion to multiple participants with low communication overhead and is applicable to generalized linear models. We give instantiations of our framework under logistic regression and Poisson regression. Theoretical analysis and experiments show that our framework is secure, more efficient, and easy to be extended to multiple participants.


On Effective Scheduling of Model-based Reinforcement Learning

arXiv.org Artificial Intelligence

Model-based reinforcement learning has attracted wide attention due to its superior sample efficiency. Despite its impressive success so far, it is still unclear how to appropriately schedule the important hyperparameters to achieve adequate performance, such as the real data ratio for policy optimization in Dyna-style model-based algorithms. In this paper, we first theoretically analyze the role of real data in policy training, which suggests that gradually increasing the ratio of real data yields better performance. Inspired by the analysis, we propose a framework named AutoMBPO to automatically schedule the real data ratio as well as other hyperparameters in training model-based policy optimization (MBPO) algorithm, a representative running case of model-based methods. On several continuous control tasks, the MBPO instance trained with hyperparameters scheduled by AutoMBPO can significantly surpass the original one, and the real data ratio schedule found by AutoMBPO shows consistency with our theoretical analysis.


An Asymptotically Optimal Multi-Armed Bandit Algorithm and Hyperparameter Optimization

arXiv.org Machine Learning

The evaluation of hyperparameters, neural architectures, or data augmentation policies becomes a critical model selection problem in advanced deep learning with a large hyperparameter search space. In this paper, we propose an efficient and robust bandit-based algorithm called Sub-Sampling (SS) in the scenario of hyperparameter search evaluation. It evaluates the potential of hyperparameters by the sub-samples of observations and is theoretically proved to be optimal under the criterion of cumulative regret. We further combine SS with Bayesian Optimization and develop a novel hyperparameter optimization algorithm called BOSS. Empirical studies validate our theoretical arguments of SS and demonstrate the superior performance of BOSS on a number of applications, including Neural Architecture Search (NAS), Data Augmentation (DA), Object Detection (OD), and Reinforcement Learning (RL).


Pearl's Calculus of Intervention Is Complete

arXiv.org Artificial Intelligence

This paper is concerned with graphical criteria that can be used to solve the problem of identifying casual effects from nonexperimental data in a causal Bayesian network structure, i.e., a directed acyclic graph that represents causal relationships. We first review Pearl's work on this topic [Pearl, 1995], in which several useful graphical criteria are presented. Then we present a complete algorithm [Huang and Valtorta, 2006b] for the identifiability problem. By exploiting the completeness of this algorithm, we prove that the three basic do-calculus rules that Pearl presents are complete, in the sense that, if a causal effect is identifiable, there exists a sequence of applications of the rules of the do-calculus that transforms the causal effect formula into a formula that only includes observational quantities.