Goto

Collaborating Authors

 Huang, Yilun


Data-Juicer 2.0: Cloud-Scale Adaptive Data Processing for Foundation Models

arXiv.org Artificial Intelligence

The burgeoning field of foundation models necessitates advanced data processing mechanisms capable of harnessing vast valuable data with varied types utilized by these models. Nevertheless, the current landscape presents unique challenges that traditional data processing frameworks cannot handle effectively, especially with multimodal intricacies. In response, we present Data-Juicer 2.0, a new system offering fruitful data processing capabilities backed by over a hundred operators spanning various modalities like text, image, audio, and video. With seamless compatibility and dedicated optimization to popular dataset hubs like Hugging Face and computing engines like Ray, Data-Juicer 2.0 enhances its predecessor in both usability, efficiency, and programmability. It features an easily accessible user interface layer that supports decoupled Python interactions, RESTful APIs, and conversational commands. Alongside this, it contains a core runtime layer optimized for adaptive execution and management across different dataset scales, processing demands, and computational environments, while shielding unnecessary system details. Extensive empirical evaluations demonstrate Data-Juicer 2.0's remarkable performance and scalability, highlighting its capability to efficiently process tens of billions of data samples with tens of thousands of CPU cores. The system is publicly available, actively maintained, and broadly adopted in diverse research endeavors, practical applications, and real-world products such as Alibaba Cloud PAI.


Data-Juicer Sandbox: A Comprehensive Suite for Multimodal Data-Model Co-development

arXiv.org Artificial Intelligence

The emergence of large-scale multi-modal generative models has drastically advanced artificial intelligence, introducing unprecedented levels of performance and functionality. However, optimizing these models remains challenging due to historically isolated paths of model-centric and data-centric developments, leading to suboptimal outcomes and inefficient resource utilization. In response, we present a novel sandbox suite tailored for integrated data-model co-development. This sandbox provides a comprehensive experimental platform, enabling rapid iteration and insight-driven refinement of both data and models. Our proposed "Probe-Analyze-Refine" workflow, validated through applications on state-of-theart LLaVA-like and DiT-based models, yields significant performance boosts, such as topping the VBench leaderboard. We also uncover fruitful insights gleaned from exhaustive benchmarks, shedding light on the critical interplay between data quality, diversity, and model behavior. With the hope of fostering deeper understanding and future progress in multi-modal data and generative modeling, our codes, datasets, and models are maintained and accessible at https://github. The advent of multi-modal generative models has revolutionized artificial intelligence, pushing the boundaries of functionality and creativity across various domains (OpenAI, 2024a;b; Wang et al., 2024). Recognizing the pivotal role of training data in shaping model performance, there are fast-growing efforts to curate datasets of larger scales and higher quality (Jakubik et al., 2024). However, the development trajectories of these models and datasets have historically diverged, guided more by intuition than by systematic co-development methodologies. Recent advances in enhancing multi-modal generative models tend to be either model-centric or data-centric, rarely bridging the two aspects cohesively. For example, model-centric methods focus on algorithmic enhancements and architectural innovations under fixed data priors, while data-centric strategies usually concentrate on processing and cleaning datasets independently of specific model training contexts (Qin et al., 2024). Both approaches usually suffer from a lack of systematic guidance and cooperative synergy, relying heavily on heuristic exploration and single-perspective expertise. This fragmented landscape presents a significant barrier to achieving optimal model performance, as the interplay between data characteristics and model capabilities remains largely underexploited. Moreover, the practical implementation of multi-modal generative models is further complicated by infrastructure constraints, escalating computational costs, and the accelerating pace of development cycles (Xu et al., 2024b).


The Synergy between Data and Multi-Modal Large Language Models: A Survey from Co-Development Perspective

arXiv.org Artificial Intelligence

The rapid development of large language models (LLMs) has been witnessed in recent years. Based on the powerful LLMs, multi-modal LLMs (MLLMs) extend the modality from text to a broader spectrum of domains, attracting widespread attention due to the broader range of application scenarios. As LLMs and MLLMs rely on vast amounts of model parameters and data to achieve emergent capabilities, the importance of data is receiving increasingly widespread attention and recognition. Tracing and analyzing recent data-oriented works for MLLMs, we find that the development of models and data is not two separate paths but rather interconnected. On the one hand, vaster and higher-quality data contribute to better performance of MLLMs, on the other hand, MLLMs can facilitate the development of data. The co-development of multi-modal data and MLLMs requires a clear view of 1) at which development stage of MLLMs can specific data-centric approaches be employed to enhance which capabilities, and 2) by utilizing which capabilities and acting as which roles can models contribute to multi-modal data. To promote the data-model co-development for MLLM community, we systematically review existing works related to MLLMs from the data-model co-development perspective. A regularly maintained project associated with this survey is accessible at https://github.com/modelscope/data-juicer/blob/main/docs/awesome_llm_data.md.


Enhancing Multimodal Large Language Models with Vision Detection Models: An Empirical Study

arXiv.org Artificial Intelligence

Despite the impressive capabilities of Multimodal Large Language Models (MLLMs) in integrating text and image modalities, challenges remain in accurately interpreting detailed visual elements. This paper presents an empirical study on enhancing MLLMs with state-of-the-art (SOTA) object detection and Optical Character Recognition models to improve fine-grained image understanding and reduce hallucination in responses. Our research investigates the embedding-based infusion of detection information, the impact of such infusion on the MLLMs' original abilities, and the interchangeability of detection models. We conduct systematic experiments with models such as LLaVA-1.5, DINO, and PaddleOCRv2, revealing that our approach not only refines MLLMs' performance in specific visual tasks but also maintains their original strengths. The resulting enhanced MLLMs outperform SOTA models on 9 out of 10 benchmarks, achieving an improvement of up to 12.99% on the normalized average score, marking a notable advancement in multimodal understanding. We release our codes to facilitate further exploration into the fine-grained multimodal dialogue capabilities of MLLMs.


Data-Juicer: A One-Stop Data Processing System for Large Language Models

arXiv.org Artificial Intelligence

The immense evolution in Large Language Models (LLMs) has underscored the importance of massive, heterogeneous, and high-quality data. A data recipe is a mixture of data from different sources for training LLMs, which plays a vital role in LLMs' performance. Existing open-source tools for LLM data processing are mostly tailored for specific data recipes. To continuously uncover the potential of LLMs, incorporate data from new sources, and improve LLMs' performance, we build a new system named Data-Juicer, with which we can efficiently generate diverse data recipes, explore different possibilities in forming data mixtures, and evaluate their effects on model performance. Different from traditional data-analytics pipelines, Data-Juicer faces some unique challenges. Firstly, the possible data sources for forming data recipes are truly heterogeneous and massive with various qualities. Secondly, it is extremely expensive to precisely evaluate data recipes' impact on LLMs' performance. Thirdly, the end users of Data-Juicer, model developers, need sufficient flexibility to configure and evaluate different data recipes. Data-Juicer features a fine-grained abstraction of pipelines for constructing data recipes, with over 50 built-in operators for easy composition and extension. By incorporating visualization and auto-evaluation capabilities, Data-Juicer enables a timely feedback loop for both LLM pre-training and fine-tuning. Further, Data-Juicer is optimized and integrated with ecosystems for LLM training, evaluation, and distributed computing. The data recipes derived with Data-Juicer gain notable improvements on state-of-the-art LLMs, by up to 7.45% increase in averaged score across 16 LLM benchmarks and 17.5% higher win rate in pair-wise GPT-4 evaluations. Our system, data recipes, and tutorials are released, calling for broader data-centric research on training and understanding LLMs.


DeepMAD: Mathematical Architecture Design for Deep Convolutional Neural Network

arXiv.org Artificial Intelligence

The rapid advances in Vision Transformer (ViT) refresh the state-of-the-art performances in various vision tasks, overshadowing the conventional CNN-based models. This ignites a few recent striking-back research in the CNN world showing that pure CNN models can achieve as good performance as ViT models when carefully tuned. While encouraging, designing such high-performance CNN models is challenging, requiring non-trivial prior knowledge of network design. To this end, a novel framework termed Mathematical Architecture Design for Deep CNN (DeepMAD) is proposed to design high-performance CNN models in a principled way. In DeepMAD, a CNN network is modeled as an information processing system whose expressiveness and effectiveness can be analytically formulated by their structural parameters. Then a constrained mathematical programming (MP) problem is proposed to optimize these structural parameters. The MP problem can be easily solved by off-the-shelf MP solvers on CPUs with a small memory footprint. In addition, DeepMAD is a pure mathematical framework: no GPU or training data is required during network design. The superiority of DeepMAD is validated on multiple large-scale computer vision benchmark datasets. Notably on ImageNet-1k, only using conventional convolutional layers, DeepMAD achieves 0.7% and 1.5% higher top-1 accuracy than ConvNeXt and Swin on Tiny level, and 0.8% and 0.9% higher on Small level.


Enhancing Model Performance in Multilingual Information Retrieval with Comprehensive Data Engineering Techniques

arXiv.org Artificial Intelligence

In this paper, we present our solution to the Multilingual Information Retrieval Across a Continuum of Languages (MIRACL) challenge of WSDM CUP 2023\footnote{https://project-miracl.github.io/}. Our solution focuses on enhancing the ranking stage, where we fine-tune pre-trained multilingual transformer-based models with MIRACL dataset. Our model improvement is mainly achieved through diverse data engineering techniques, including the collection of additional relevant training data, data augmentation, and negative sampling. Our fine-tuned model effectively determines the semantic relevance between queries and documents, resulting in a significant improvement in the efficiency of the multilingual information retrieval process. Finally, Our team is pleased to achieve remarkable results in this challenging competition, securing 2nd place in the Surprise-Languages track with a score of 0.835 and 3rd place in the Known-Languages track with an average nDCG@10 score of 0.716 across the 16 known languages on the final leaderboard.