Huang, Yao
STAIR: Improving Safety Alignment with Introspective Reasoning
Zhang, Yichi, Zhang, Siyuan, Huang, Yao, Xia, Zeyu, Fang, Zhengwei, Yang, Xiao, Duan, Ranjie, Yan, Dong, Dong, Yinpeng, Zhu, Jun
Ensuring the safety and harmlessness of Large Language Models (LLMs) has become equally critical as their performance in applications. However, existing safety alignment methods typically suffer from safety-performance trade-offs and the susceptibility to jailbreak attacks, primarily due to their reliance on direct refusals for malicious queries. In this paper, we propose STAIR, a novel framework that integrates SafeTy Alignment with Itrospective Reasoning. We enable LLMs to identify safety risks through step-by-step analysis by self-improving chain-of-thought (CoT) reasoning with safety awareness. STAIR first equips the model with a structured reasoning capability and then advances safety alignment via iterative preference optimization on step-level reasoning data generated using our newly proposed Safety-Informed Monte Carlo Tree Search (SI-MCTS). We further train a process reward model on this data to guide test-time searches for improved responses. Extensive experiments show that STAIR effectively mitigates harmful outputs while better preserving helpfulness, compared to instinctive alignment strategies. With test-time scaling, STAIR achieves a safety performance comparable to Claude-3.5 against popular jailbreak attacks. Relevant resources in this work are available at https://github.com/thu-ml/STAIR.
PaMMA-Net: Plasmas magnetic measurement evolution based on data-driven incremental accumulative prediction
Ling, Yunfei, Liu, Zijie, Du, Jun, Huang, Yao, Wang, Yuehang, Xiao, Bingjia, Fang, Xin
An accurate evolution model is crucial for effective control and in-depth study of fusion plasmas. Evolution methods based on physical models often encounter challenges such as insufficient robustness or excessive computational costs. Given the proven strong fitting capabilities of deep learning methods across various fields, including plasma research, this paper introduces a deep learning-based magnetic measurement evolution method named PaMMA-Net (Plasma Magnetic Measurements Incremental Accumulative Prediction Network). This network is capable of evolving magnetic measurements in tokamak discharge experiments over extended periods or, in conjunction with equilibrium reconstruction algorithms, evolving macroscopic parameters such as plasma shape. Leveraging a incremental prediction approach and data augmentation techniques tailored for magnetic measurements, PaMMA-Net achieves superior evolution results compared to existing studies. The tests conducted on real experimental data from EAST validate the high generalization capability of the proposed method.
Benchmarking Trustworthiness of Multimodal Large Language Models: A Comprehensive Study
Zhang, Yichi, Huang, Yao, Sun, Yitong, Liu, Chang, Zhao, Zhe, Fang, Zhengwei, Wang, Yifan, Chen, Huanran, Yang, Xiao, Wei, Xingxing, Su, Hang, Dong, Yinpeng, Zhu, Jun
Despite the superior capabilities of Multimodal Large Language Models (MLLMs) across diverse tasks, they still face significant trustworthiness challenges. Yet, current literature on the assessment of trustworthy MLLMs remains limited, lacking a holistic evaluation to offer thorough insights into future improvements. In this work, we establish MultiTrust, the first comprehensive and unified benchmark on the trustworthiness of MLLMs across five primary aspects: truthfulness, safety, robustness, fairness, and privacy. Our benchmark employs a rigorous evaluation strategy that addresses both multimodal risks and cross-modal impacts, encompassing 32 diverse tasks with self-curated datasets. Extensive experiments with 21 modern MLLMs reveal some previously unexplored trustworthiness issues and risks, highlighting the complexities introduced by the multimodality and underscoring the necessity for advanced methodologies to enhance their reliability. For instance, typical proprietary models still struggle with the perception of visually confusing images and are vulnerable to multimodal jailbreaking and adversarial attacks; MLLMs are more inclined to disclose privacy in text and reveal ideological and cultural biases even when paired with irrelevant images in inference, indicating that the multimodality amplifies the internal risks from base LLMs. Additionally, we release a scalable toolbox for standardized trustworthiness research, aiming to facilitate future advancements in this important field. Code and resources are publicly available at: https://multi-trust.github.io/.
HOSSnet: an Efficient Physics-Guided Neural Network for Simulating Crack Propagation
Chen, Shengyu, Feng, Shihang, Huang, Yao, Lei, Zhou, Jia, Xiaowei, Lin, Youzuo, Rougier, Estaben
Hybrid Optimization Software Suite (HOSS), which is a combined finite-discrete element method (FDEM), is one of the advanced approaches to simulating high-fidelity fracture and fragmentation processes but the application of pure HOSS simulation is computationally expensive. At the same time, machine learning methods, shown tremendous success in several scientific problems, are increasingly being considered promising alternatives to physics-based models in the scientific domains. Thus, our goal in this work is to build a new data-driven methodology to reconstruct the crack fracture accurately in the spatial and temporal fields. We leverage physical constraints to regularize the fracture propagation in the long-term reconstruction. In addition, we introduce perceptual loss and several extra pure machine learning optimization approaches to improve the reconstruction performance of fracture data further. We demonstrate the effectiveness of our proposed method through both extrapolation and interpolation experiments. The results confirm that our proposed method can reconstruct high-fidelity fracture data over space and time in terms of pixel-wise reconstruction error and structural similarity. Visual comparisons also show promising results in long-term
Continual Graph Convolutional Network for Text Classification
Wu, Tiandeng, Liu, Qijiong, Cao, Yi, Huang, Yao, Wu, Xiao-Ming, Ding, Jiandong
Graph convolutional network (GCN) has been successfully applied to capture global non-consecutive and long-distance semantic information for text classification. However, while GCN-based methods have shown promising results in offline evaluations, they commonly follow a seen-token-seen-document paradigm by constructing a fixed document-token graph and cannot make inferences on new documents. It is a challenge to deploy them in online systems to infer steaming text data. In this work, we present a continual GCN model (ContGCN) to generalize inferences from observed documents to unobserved documents. Concretely, we propose a new all-token-any-document paradigm to dynamically update the document-token graph in every batch during both the training and testing phases of an online system. Moreover, we design an occurrence memory module and a self-supervised contrastive learning objective to update ContGCN in a label-free manner. A 3-month A/B test on Huawei public opinion analysis system shows ContGCN achieves 8.86% performance gain compared with state-of-the-art methods. Offline experiments on five public datasets also show ContGCN can improve inference quality. The source code will be released at https://github.com/Jyonn/ContGCN.
HomPINNs: homotopy physics-informed neural networks for solving the inverse problems of nonlinear differential equations with multiple solutions
Zheng, Haoyang, Huang, Yao, Huang, Ziyang, Hao, Wenrui, Lin, Guang
Due to the complex behavior arising from non-uniqueness, symmetry, and bifurcations in the solution space, solving inverse problems of nonlinear differential equations (DEs) with multiple solutions is a challenging task. To address this issue, we propose homotopy physics-informed neural networks (HomPINNs), a novel framework that leverages homotopy continuation and neural networks (NNs) to solve inverse problems. The proposed framework begins with the use of a NN to simultaneously approximate known observations and conform to the constraints of DEs. By utilizing the homotopy continuation method, the approximation traces the observations to identify multiple solutions and solve the inverse problem. The experiments involve testing the performance of the proposed method on one-dimensional DEs and applying it to solve a two-dimensional Gray-Scott simulation. Our findings demonstrate that the proposed method is scalable and adaptable, providing an effective solution for solving DEs with multiple solutions and unknown parameters. Moreover, it has significant potential for various applications in scientific computing, such as modeling complex systems and solving inverse problems in physics, chemistry, biology, etc.
Machine unlearning via GAN
Chen, Kongyang, Huang, Yao, Wang, Yiwen
Machine learning models, especially deep models, may unintentionally remember information about their training data. Malicious attackers can thus pilfer some property about training data by attacking the model via membership inference attack or model inversion attack. Some regulations, such as the EU's GDPR, have enacted "The Right to Be Forgotten" to protect users' data privacy, enhancing individuals' sovereignty over their data. Therefore, removing training data information from a trained model has become a critical issue. In this paper, we present a GAN-based algorithm to delete data in deep models, which significantly improves deleting speed compared to retraining from scratch, especially in complicated scenarios. We have experimented on five commonly used datasets, and the experimental results show the efficiency of our method.
Lightweight machine unlearning in neural network
Chen, Kongyang, Wang, Yiwen, Huang, Yao
In recent years, machine learning neural network has penetrated deeply into people's life. As the price of convenience, people's private information also has the risk of disclosure. The "right to be forgotten" was introduced in a timely manner, stipulating that individuals have the right to withdraw their consent from personal information processing activities based on their consent. To solve this problem, machine unlearning is proposed, which allows the model to erase all memory of private information. Previous studies, including retraining and incremental learning to update models, often take up extra storage space or are difficult to apply to neural networks. Our method only needs to make a small perturbation of the weight of the target model and make it iterate in the direction of the model trained with the remaining data subset until the contribution of the unlearning data to the model is completely eliminated. In this paper, experiments on five datasets prove the effectiveness of our method for machine unlearning, and our method is 15 times faster than retraining.