Goto

Collaborating Authors

 Huang, Wen-Chin


A Large-Scale Evaluation of Speech Foundation Models

arXiv.org Artificial Intelligence

The foundation model paradigm leverages a shared foundation model to achieve state-of-the-art (SOTA) performance for various tasks, requiring minimal downstream-specific modeling and data annotation. This approach has proven crucial in the field of Natural Language Processing (NLP). However, the speech processing community lacks a similar setup to explore the paradigm systematically. In this work, we establish the Speech processing Universal PERformance Benchmark (SUPERB) to study the effectiveness of the paradigm for speech. We propose a unified multi-tasking framework to address speech processing tasks in SUPERB using a frozen foundation model followed by task-specialized, lightweight prediction heads. Combining our results with community submissions, we verify that the foundation model paradigm is promising for speech, and our multi-tasking framework is simple yet effective, as the best-performing foundation model shows competitive generalizability across most SUPERB tasks. For reproducibility and extensibility, we have developed a long-term maintained platform that enables deterministic benchmarking, allows for result sharing via an online leaderboard, and promotes collaboration through a community-driven benchmark database to support new development cycles. Finally, we conduct a series of analyses to offer an in-depth understanding of SUPERB and speech foundation models, including information flows across tasks inside the models, the correctness of the weighted-sum benchmarking protocol and the statistical significance and robustness of the benchmark.


A Comparative Study of Voice Conversion Models with Large-Scale Speech and Singing Data: The T13 Systems for the Singing Voice Conversion Challenge 2023

arXiv.org Artificial Intelligence

This paper presents our systems (denoted as T13) for the singing voice conversion challenge (SVCC) 2023. For both in-domain and cross-domain English singing voice conversion (SVC) tasks (Task 1 and Task 2), we adopt a recognition-synthesis approach with self-supervised learning-based representation. To achieve data-efficient SVC with a limited amount of target singer/speaker's data (150 to 160 utterances for SVCC 2023), we first train a diffusion-based any-to-any voice conversion model using publicly available large-scale 750 hours of speech and singing data. Then, we finetune the model for each target singer/speaker of Task 1 and Task 2. Large-scale listening tests conducted by SVCC 2023 show that our T13 system achieves competitive naturalness and speaker similarity for the harder cross-domain SVC (Task 2), which implies the generalization ability of our proposed method. Our objective evaluation results show that using large datasets is particularly beneficial for cross-domain SVC.


Evaluating Methods for Ground-Truth-Free Foreign Accent Conversion

arXiv.org Artificial Intelligence

Foreign accent conversion (FAC) is a special application of voice conversion (VC) which aims to convert the accented speech of a non-native speaker to a native-sounding speech with the same speaker identity. FAC is difficult since the native speech from the desired non-native speaker to be used as the training target is impossible to collect. In this work, we evaluate three recently proposed methods for ground-truth-free FAC, where all of them aim to harness the power of sequence-to-sequence (seq2seq) and non-parallel VC models to properly convert the accent and control the speaker identity. Our experimental evaluation results show that no single method was significantly better than the others in all evaluation axes, which is in contrast to conclusions drawn in previous studies. We also explain the effectiveness of these methods with the training input and output of the seq2seq model and examine the design choice of the non-parallel VC model, and show that intelligibility measures such as word error rates do not correlate well with subjective accentedness. Finally, our implementation is open-sourced to promote reproducible research and help future researchers improve upon the compared systems.


The Singing Voice Conversion Challenge 2023

arXiv.org Artificial Intelligence

We present the latest iteration of the voice conversion challenge (VCC) series, a bi-annual scientific event aiming to compare and understand different voice conversion (VC) systems based on a common dataset. This year we shifted our focus to singing voice conversion (SVC), thus named the challenge the Singing Voice Conversion Challenge (SVCC). A new database was constructed for two tasks, namely in-domain and cross-domain SVC. The challenge was run for two months, and in total we received 26 submissions, including 2 baselines. Through a large-scale crowd-sourced listening test, we observed that for both tasks, although human-level naturalness was achieved by the top system, no team was able to obtain a similarity score as high as the target speakers. Also, as expected, cross-domain SVC is harder than in-domain SVC, especially in the similarity aspect. We also investigated whether existing objective measurements were able to predict perceptual performance, and found that only few of them could reach a significant correlation.


A Holistic Cascade System, benchmark, and Human Evaluation Protocol for Expressive Speech-to-Speech Translation

arXiv.org Artificial Intelligence

Expressive speech-to-speech translation (S2ST) aims to transfer prosodic attributes of source speech to target speech while maintaining translation accuracy. Existing research in expressive S2ST is limited, typically focusing on a single expressivity aspect at a time. Likewise, this research area lacks standard evaluation protocols and well-curated benchmark datasets. In this work, we propose a holistic cascade system for expressive S2ST, combining multiple prosody transfer techniques previously considered only in isolation. We curate a benchmark expressivity test set in the TV series domain and explored a second dataset in the audiobook domain. Finally, we present a human evaluation protocol to assess multiple expressive dimensions across speech pairs. Experimental results indicate that bi-lingual annotators can assess the quality of expressive preservation in S2ST systems, and the holistic modeling approach outperforms single-aspect systems. Audio samples can be accessed through our demo webpage: https://facebookresearch.github.io/speech_translation/cascade_expressive_s2st.


A Comparative Study of Self-supervised Speech Representation Based Voice Conversion

arXiv.org Artificial Intelligence

We present a large-scale comparative study of self-supervised speech representation (S3R)-based voice conversion (VC). In the context of recognition-synthesis VC, S3Rs are attractive owing to their potential to replace expensive supervised representations such as phonetic posteriorgrams (PPGs), which are commonly adopted by state-of-the-art VC systems. Using S3PRL-VC, an open-source VC software we previously developed, we provide a series of in-depth objective and subjective analyses under three VC settings: intra-/cross-lingual any-to-one (A2O) and any-to-any (A2A) VC, using the voice conversion challenge 2020 (VCC2020) dataset. We investigated S3R-based VC in various aspects, including model type, multilinguality, and supervision. We also studied the effect of a post-discretization process with k-means clustering and showed how it improves in the A2A setting. Finally, the comparison with state-of-the-art VC systems demonstrates the competitiveness of S3R-based VC and also sheds light on the possible improving directions.


Many-to-Many Voice Transformer Network

arXiv.org Machine Learning

This paper proposes a voice conversion (VC) method based on a sequence-to-sequence (S2S) learning framework, which enables simultaneous conversion of the voice characteristics, pitch contour, and duration of input speech. We previously proposed an S2S-based VC method using a transformer network architecture called the voice transformer network (VTN). The original VTN was designed to learn only a mapping of speech feature sequences from one speaker to another. The main idea we propose is an extension of the original VTN that can simultaneously learn mappings among multiple speakers. This extension called the many-to-many VTN makes it able to fully use available training data collected from multiple speakers by capturing common latent features that can be shared across different speakers. It also allows us to introduce a training loss called the identity mapping loss to ensure that the input feature sequence will remain unchanged when the source and target speaker indices are the same. Using this particular loss for model training has been found to be extremely effective in improving the performance of the model at test time. We conducted speaker identity conversion experiments and found that our model obtained higher sound quality and speaker similarity than baseline methods. We also found that our model, with a slight modification to its architecture, could handle any-to-many conversion tasks reasonably well.