Goto

Collaborating Authors

 Huang, Wen


Visual Hallucinations of Multi-modal Large Language Models

arXiv.org Artificial Intelligence

Visual hallucination (VH) means that a multi-modal LLM (MLLM) imagines incorrect details about an image in visual question answering. Existing studies find VH instances only in existing image datasets, which results in biased understanding of MLLMs' performance under VH due to limited diversity of such VH instances. In this work, we propose a tool called VHTest to generate a diverse set of VH instances. Specifically, VHTest finds some initial VH instances in existing image datasets (e.g., COCO), generates a text description for each VH mode, and uses a text-to-image generative model (e.g., DALL-E-3) to generate VH images based on the text descriptions. We collect a benchmark dataset with 1,200 VH instances in 8 VH modes using VHTest. We find that existing MLLMs such as GPT-4V, LLaVA-1.5, and MiniGPT-v2 hallucinate for a large fraction of the instances in our benchmark. Moreover, we find that fine-tuning an MLLM using our benchmark dataset reduces its likelihood to hallucinate without sacrificing its performance on other benchmarks. Our benchmarks are publicly available: https://github.com/wenhuang2000/VHTest.


Federated Learning on Riemannian Manifolds with Differential Privacy

arXiv.org Artificial Intelligence

In recent years, federated learning (FL) has emerged as a prominent paradigm in distributed machine learning. Despite the partial safeguarding of agents' information within FL systems, a malicious adversary can potentially infer sensitive information through various means. In this paper, we propose a generic private FL framework defined on Riemannian manifolds (PriRFed) based on the differential privacy (DP) technique. We analyze the privacy guarantee while establishing the convergence properties. To the best of our knowledge, this is the first federated learning framework on Riemannian manifold with a privacy guarantee and convergence results. Numerical simulations are performed on synthetic and real-world datasets to showcase the efficacy of the proposed PriRFed approach.


Robustly Improving Bandit Algorithms with Confounded and Selection Biased Offline Data: A Causal Approach

arXiv.org Machine Learning

This paper studies bandit problems where an agent has access to offline data that might be utilized to potentially improve the estimation of each arm's reward distribution. A major obstacle in this setting is the existence of compound biases from the observational data. Ignoring these biases and blindly fitting a model with the biased data could even negatively affect the online learning phase. In this work, we formulate this problem from a causal perspective. First, we categorize the biases into confounding bias and selection bias based on the causal structure they imply. Next, we extract the causal bound for each arm that is robust towards compound biases from biased observational data. The derived bounds contain the ground truth mean reward and can effectively guide the bandit agent to learn a nearly-optimal decision policy. We also conduct regret analysis in both contextual and non-contextual bandit settings and show that prior causal bounds could help consistently reduce the asymptotic regret.


Data-Free Hard-Label Robustness Stealing Attack

arXiv.org Artificial Intelligence

The popularity of Machine Learning as a Service (MLaaS) has led to increased concerns about Model Stealing Attacks (MSA), which aim to craft a clone model by querying MLaaS. Currently, most research on MSA assumes that MLaaS can provide soft labels and that the attacker has a proxy dataset with a similar distribution. However, this fails to encapsulate the more practical scenario where only hard labels are returned by MLaaS and the data distribution remains elusive. Furthermore, most existing work focuses solely on stealing the model accuracy, neglecting the model robustness, while robustness is essential in security-sensitive scenarios, e.g., face-scan payment. Notably, improving model robustness often necessitates the use of expensive techniques such as adversarial training, thereby further making stealing robustness a more lucrative prospect. In response to these identified gaps, we introduce a novel Data-Free Hard-Label Robustness Stealing (DFHL-RS) attack in this paper, which enables the stealing of both model accuracy and robustness by simply querying hard labels of the target model without the help of any natural data. Comprehensive experiments demonstrate the effectiveness of our method. The clone model achieves a clean accuracy of 77.86% and a robust accuracy of 39.51% against AutoAttack, which are only 4.71% and 8.40% lower than the target model on the CIFAR-10 dataset, significantly exceeding the baselines. Our code is available at: https://github.com/LetheSec/DFHL-RS-Attack.


Local Differential Privacy in Graph Neural Networks: a Reconstruction Approach

arXiv.org Artificial Intelligence

Graph Neural Networks have achieved tremendous success in modeling complex graph data in a variety of applications. However, there are limited studies investigating privacy protection in GNNs. In this work, we propose a learning framework that can provide node privacy at the user level, while incurring low utility loss. We focus on a decentralized notion of Differential Privacy, namely Local Differential Privacy, and apply randomization mechanisms to perturb both feature and label data at the node level before the data is collected by a central server for model training. Specifically, we investigate the application of randomization mechanisms in high-dimensional feature settings and propose an LDP protocol with strict privacy guarantees. Based on frequency estimation in statistical analysis of randomized data, we develop reconstruction methods to approximate features and labels from perturbed data. We also formulate this learning framework to utilize frequency estimates of graph clusters to supervise the training procedure at a sub-graph level. Extensive experiments on real-world and semi-synthetic datasets demonstrate the validity of our proposed model.


A Robust Classifier Under Missing-Not-At-Random Sample Selection Bias

arXiv.org Artificial Intelligence

The shift between the training and testing distributions is commonly due to sample selection bias, a type of bias caused by non-random sampling of examples to be included in the training set. Although there are many approaches proposed to learn a classifier under sample selection bias, few address the case where a subset of labels in the training set are missing-not-at-random (MNAR) as a result of the selection process. In statistics, Greene's method formulates this type of sample selection with logistic regression as the prediction model. However, we find that simply integrating this method into a robust classification framework is not effective for this bias setting. In this paper, we propose BiasCorr, an algorithm that improves on Greene's method by modifying the original training set in order for a classifier to learn under MNAR sample selection bias. We provide theoretical guarantee for the improvement of BiasCorr over Greene's method by analyzing its bias. Experimental results on real-world datasets demonstrate that BiasCorr produces robust classifiers and can be extended to outperform state-of-the-art classifiers that have been proposed to train under sample selection bias.


Achieving Counterfactual Fairness for Causal Bandit

arXiv.org Artificial Intelligence

In online recommendation, customers arrive in a sequential and stochastic manner from an underlying distribution and the online decision model recommends a chosen item for each arriving individual based on some strategy. We study how to recommend an item at each step to maximize the expected reward while achieving user-side fairness for customers, i.e., customers who share similar profiles will receive a similar reward regardless of their sensitive attributes and items being recommended. By incorporating causal inference into bandits and adopting soft intervention to model the arm selection strategy, we first propose the d-separation based UCB algorithm (D-UCB) to explore the utilization of the d-separation set in reducing the amount of exploration needed to achieve low cumulative regret. Based on that, we then propose the fair causal bandit (F-UCB) for achieving the counterfactual individual fairness. Both theoretical analysis and empirical evaluation demonstrate effectiveness of our algorithms.


Recursive Importance Sketching for Rank Constrained Least Squares: Algorithms and High-order Convergence

arXiv.org Machine Learning

In this paper, we propose a new {\it \underline{R}ecursive} {\it \underline{I}mportance} {\it \underline{S}ketching} algorithm for {\it \underline{R}ank} constrained least squares {\it \underline{O}ptimization} (RISRO). As its name suggests, the algorithm is based on a new sketching framework, recursive importance sketching. Several existing algorithms in the literature can be reinterpreted under the new sketching framework and RISRO offers clear advantages over them. RISRO is easy to implement and computationally efficient, where the core procedure in each iteration is only solving a dimension reduced least squares problem. Different from numerous existing algorithms with locally geometric convergence rate, we establish the local quadratic-linear and quadratic rate of convergence for RISRO under some mild conditions. In addition, we discover a deep connection of RISRO to Riemannian manifold optimization on fixed rank matrices. The effectiveness of RISRO is demonstrated in two applications in machine learning and statistics: low-rank matrix trace regression and phase retrieval. Simulation studies demonstrate the superior numerical performance of RISRO.


Achieving User-Side Fairness in Contextual Bandits

arXiv.org Artificial Intelligence

Personalized recommendation based on multi-arm bandit (MAB) algorithms has shown to lead to high utility and efficiency as it can dynamically adapt the recommendation strategy based on feedback. However, unfairness could incur in personalized recommendation. In this paper, we study how to achieve user-side fairness in personalized recommendation. We formulate our fair personalized recommendation as a modified contextual bandit and focus on achieving fairness on the individual whom is being recommended an item as opposed to achieving fairness on the items that are being recommended. We introduce and define a metric that captures the fairness in terms of rewards received for both the privileged and protected groups. We develop a fair contextual bandit algorithm, Fair-LinUCB, that improves upon the traditional LinUCB algorithm to achieve group-level fairness of users. Our algorithm detects and monitors unfairness while it learns to recommend personalized videos to students to achieve high efficiency. We provide a theoretical regret analysis and show that our algorithm has a slightly higher regret bound than LinUCB. We conduct numerous experimental evaluations to compare the performances of our fair contextual bandit to that of LinUCB and show that our approach achieves group-level fairness while maintaining a high utility.