Goto

Collaborating Authors

 Huang, Tsung-Wei


Parametric Shadow Control for Portrait Generation in Text-to-Image Diffusion Models

arXiv.org Artificial Intelligence

Text-to-image diffusion models excel at generating diverse portraits, but lack intuitive shadow control. Existing editing approaches, as post-processing, struggle to offer effective manipulation across diverse styles. Additionally, these methods either rely on expensive real-world light-stage data collection or require extensive computational resources for training. To address these limitations, we introduce Shadow Director, a method that extracts and manipulates hidden shadow attributes within well-trained diffusion models. Our approach uses a small estimation network that requires only a few thousand synthetic images and hours of training-no costly real-world light-stage data needed. Shadow Director enables parametric and intuitive control over shadow shape, placement, and intensity during portrait generation while preserving artistic integrity and identity across diverse styles. Despite training only on synthetic data built on real-world identities, it generalizes effectively to generated portraits with diverse styles, making it a more accessible and resource-friendly solution.


Anytime Multi-Agent Path Finding using Operation Parallelism in Large Neighborhood Search

arXiv.org Artificial Intelligence

Multi-Agent Path Finding (MAPF) is the problem of finding a set of collision-free paths for multiple agents in a shared environment while minimizing the sum of travel time. Since solving the MAPF problem optimally is NP-hard, anytime algorithms based on Large Neighborhood Search (LNS) are promising to find good-quality solutions in a scalable way by iteratively destroying and repairing the paths. We propose Destroy-Repair Operation Parallelism for LNS (DROP-LNS), a parallel framework that performs multiple destroy and repair operations concurrently to explore more regions of the search space within a limited time budget. Unlike classic MAPF approaches, DROP-LNS can exploit parallelized hardware to improve the solution quality. We also formulate two variants of parallelism and conduct experimental evaluations. The results show that DROP-LNS significantly outperforms the state-of-the-art and the variants.