Huang, Tianyu
Introducing Anisotropic Fields for Enhanced Diversity in Crowd Simulation
Li, Yihao, Liu, Junyu, Guan, Xiaoyu, Hou, Hanming, Huang, Tianyu
Large crowds exhibit intricate behaviors and significant emergent properties, yet existing crowd simulation systems often lack behavioral diversity, resulting in homogeneous simulation outcomes. To address this limitation, we propose incorporating anisotropic fields (AFs) as a fundamental structure for depicting the uncertainty in crowd movement. By leveraging AFs, our method can rapidly generate crowd simulations with intricate behavioral patterns that better reflect the inherent complexity of real crowds. The AFs are generated either through intuitive sketching or extracted from real crowd videos, enabling flexible and efficient crowd simulation systems. We demonstrate the effectiveness of our approach through several representative scenarios, showcasing a significant improvement in behavioral diversity compared to classical methods. Our findings indicate that by incorporating AFs, crowd simulation systems can achieve a much higher similarity to real-world crowd systems. Our code is publicly available at https://github.com/tomblack2014/AF\_Generation.
Towards Ground-truth-free Evaluation of Any Segmentation in Medical Images
Senbi, Ahjol, Huang, Tianyu, Lyu, Fei, Li, Qing, Tao, Yuhui, Shao, Wei, Chen, Qiang, Wang, Chengyan, Wang, Shuo, Zhou, Tao, Zhang, Yizhe
We explore the feasibility and potential of building a ground-truth-free evaluation model to assess the quality of segmentations generated by the Segment Anything Model (SAM) and its variants in medical imaging. This evaluation model estimates segmentation quality scores by analyzing the coherence and consistency between the input images and their corresponding segmentation predictions. Based on prior research, we frame the task of training this model as a regression problem within a supervised learning framework, using Dice scores (and optionally other metrics) along with mean squared error to compute the training loss. The model is trained utilizing a large collection of public datasets of medical images with segmentation predictions from SAM and its variants. We name this model EvanySeg (Evaluation of Any Segmentation in Medical Images). Our exploration of convolution-based models (e.g., ResNet) and transformer-based models (e.g., ViT) suggested that ViT yields better performance for this task. EvanySeg can be employed for various tasks, including: (1) identifying poorly segmented samples by detecting low-percentile segmentation quality scores; (2) benchmarking segmentation models without ground truth by averaging quality scores across test samples; (3) alerting human experts to poor-quality segmentation predictions during human-AI collaboration by applying a threshold within the score space; and (4) selecting the best segmentation prediction for each test sample at test time when multiple segmentation models are available, by choosing the prediction with the highest quality score. Models and code will be made available at https://github.com/ahjolsenbics/EvanySeg.
Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation
Huang, Tianyu, Zhou, Tao, Xie, Weidi, Wang, Shuo, Dou, Qi, Zhang, Yizhe
The current variants of the Segment Anything Model (SAM), which include the original SAM and Medical SAM, still lack the capability to produce sufficiently accurate segmentation for medical images. In medical imaging contexts, it is not uncommon for human experts to rectify segmentations of specific test samples after SAM generates its segmentation predictions. These rectifications typically entail manual or semi-manual corrections employing state-of-the-art annotation tools. Motivated by this process, we introduce a novel approach that leverages the advantages of online machine learning to enhance Segment Anything (SA) during test time. We employ rectified annotations to perform online learning, with the aim of improving the segmentation quality of SA on medical images. To improve the effectiveness and efficiency of online learning when integrated with large-scale vision models like SAM, we propose a new method called Auxiliary Online Learning (AuxOL). AuxOL creates and applies a small auxiliary model (specialist) in conjunction with SAM (generalist), entails adaptive online-batch and adaptive segmentation fusion. Experiments conducted on eight datasets covering four medical imaging modalities validate the effectiveness of the proposed method. Our work proposes and validates a new, practical, and effective approach for enhancing SA on downstream segmentation tasks (e.g., medical image segmentation).
Scalable 3D Registration via Truncated Entry-wise Absolute Residuals
Huang, Tianyu, Peng, Liangzu, Vidal, Renรฉ, Liu, Yun-Hui
Given an input set of $3$D point pairs, the goal of outlier-robust $3$D registration is to compute some rotation and translation that align as many point pairs as possible. This is an important problem in computer vision, for which many highly accurate approaches have been recently proposed. Despite their impressive performance, these approaches lack scalability, often overflowing the $16$GB of memory of a standard laptop to handle roughly $30,000$ point pairs. In this paper, we propose a $3$D registration approach that can process more than ten million ($10^7$) point pairs with over $99\%$ random outliers. Moreover, our method is efficient, entails low memory costs, and maintains high accuracy at the same time. We call our method TEAR, as it involves minimizing an outlier-robust loss that computes Truncated Entry-wise Absolute Residuals. To minimize this loss, we decompose the original $6$-dimensional problem into two subproblems of dimensions $3$ and $2$, respectively, solved in succession to global optimality via a customized branch-and-bound method. While branch-and-bound is often slow and unscalable, this does not apply to TEAR as we propose novel bounding functions that are tight and computationally efficient. Experiments on various datasets are conducted to validate the scalability and efficiency of our method.
Efficient and Robust Point Cloud Registration via Heuristics-guided Parameter Search
Huang, Tianyu, Li, Haoang, Peng, Liangzu, Liu, Yinlong, Liu, Yun-Hui
Estimating the rigid transformation with 6 degrees of freedom based on a putative 3D correspondence set is a crucial procedure in point cloud registration. Existing correspondence identification methods usually lead to large outlier ratios ($>$ 95 $\%$ is common), underscoring the significance of robust registration methods. Many researchers turn to parameter search-based strategies (e.g., Branch-and-Bround) for robust registration. Although related methods show high robustness, their efficiency is limited to the high-dimensional search space. This paper proposes a heuristics-guided parameter search strategy to accelerate the search while maintaining high robustness. We first sample some correspondences (i.e., heuristics) and then just need to sequentially search the feasible regions that make each sample an inlier. Our strategy largely reduces the search space and can guarantee accuracy with only a few inlier samples, therefore enjoying an excellent trade-off between efficiency and robustness. Since directly parameterizing the 6-dimensional nonlinear feasible region for efficient search is intractable, we construct a three-stage decomposition pipeline to reparameterize the feasible region, resulting in three lower-dimensional sub-problems that are easily solvable via our strategy. Besides reducing the searching dimension, our decomposition enables the leverage of 1-dimensional interval stabbing at all three stages for searching acceleration. Moreover, we propose a valid sampling strategy to guarantee our sampling effectiveness, and a compatibility verification setup to further accelerate our search. Extensive experiments on both simulated and real-world datasets demonstrate that our approach exhibits comparable robustness with state-of-the-art methods while achieving a significant efficiency boost.
A Comprehensive Survey on 3D Content Generation
Liu, Jian, Huang, Xiaoshui, Huang, Tianyu, Chen, Lu, Hou, Yuenan, Tang, Shixiang, Liu, Ziwei, Ouyang, Wanli, Zuo, Wangmeng, Jiang, Junjun, Liu, Xianming
Recent years have witnessed remarkable advances in artificial intelligence generated content(AIGC), with diverse input modalities, e.g., text, image, video, audio and 3D. The 3D is the most close visual modality to real-world 3D environment and carries enormous knowledge. The 3D content generation shows both academic and practical values while also presenting formidable technical challenges. This review aims to consolidate developments within the burgeoning domain of 3D content generation. Specifically, a new taxonomy is proposed that categorizes existing approaches into three types: 3D native generative methods, 2D prior-based 3D generative methods, and hybrid 3D generative methods. The survey covers approximately 60 papers spanning the major techniques. Besides, we discuss limitations of current 3D content generation techniques, and point out open challenges as well as promising directions for future work. Accompanied with this survey, we have established a project website where the resources on 3D content generation research are provided. The project page is available at https://github.com/hitcslj/Awesome-AIGC-3D.
GeoGalactica: A Scientific Large Language Model in Geoscience
Lin, Zhouhan, Deng, Cheng, Zhou, Le, Zhang, Tianhang, Xu, Yi, Xu, Yutong, He, Zhongmou, Shi, Yuanyuan, Dai, Beiya, Song, Yunchong, Zeng, Boyi, Chen, Qiyuan, Shi, Tao, Huang, Tianyu, Xu, Yiwei, Wang, Shu, Fu, Luoyi, Zhang, Weinan, He, Junxian, Ma, Chao, Zhu, Yunqiang, Wang, Xinbing, Zhou, Chenghu
Large language models (LLMs) have achieved huge success for their general knowledge and ability to solve a wide spectrum of tasks in natural language processing (NLP). Due to their impressive abilities, LLMs have shed light on potential inter-discipline applications to foster scientific discoveries of a specific domain by using artificial intelligence (AI for science, AI4S). In the meantime, utilizing NLP techniques in geoscience research and practice is wide and convoluted, contributing from knowledge extraction and document classification to question answering and knowledge discovery. In this work, we take the initial step to leverage LLM for science, through a rather straightforward approach. We try to specialize an LLM into geoscience, by further pre-training the model with a vast amount of texts in geoscience, as well as supervised fine-tuning (SFT) the resulting model with our custom collected instruction tuning dataset. These efforts result in a model GeoGalactica consisting of 30 billion parameters. To our best knowledge, it is the largest language model for the geoscience domain. More specifically, GeoGalactica is from further pre-training of Galactica. We train GeoGalactica over a geoscience-related text corpus containing 65 billion tokens curated from extensive data sources in the big science project Deep-time Digital Earth (DDE), preserving as the largest geoscience-specific text corpus. Then we fine-tune the model with 1 million pairs of instruction-tuning data consisting of questions that demand professional geoscience knowledge to answer. In this technical report, we will illustrate in detail all aspects of GeoGalactica, including data collection, data cleaning, base model selection, pre-training, SFT, and evaluation. We open-source our data curation tools and the checkpoints of GeoGalactica during the first 3/4 of pre-training.
Record Deduplication for Entity Distribution Modeling in ASR Transcripts
Huang, Tianyu, Hong, Chung Hoon, Wivagg, Carl, Shimizu, Kanna
Voice digital assistants must keep up with trending search queries. We rely on a speech recognition model using contextual biasing with a rapidly updated set of entities, instead of frequent model retraining, to keep up with trends. There are several challenges with this approach: (1) the entity set must be frequently reconstructed, (2) the entity set is of limited size due to latency and accuracy trade-offs, and (3) finding the true entity distribution for biasing is complicated by ASR misrecognition. We address these challenges and define an entity set by modeling customers true requested entity distribution from ASR output in production using record deduplication, a technique from the field of entity resolution. Record deduplication resolves or deduplicates coreferences, including misrecognitions, of the same latent entity. Our method successfully retrieves 95% of misrecognized entities and when used for contextual biasing shows an estimated 5% relative word error rate reduction.