Huang, Shuqiao
Learn Once Plan Arbitrarily (LOPA): Attention-Enhanced Deep Reinforcement Learning Method for Global Path Planning
Huang, Guoming, Hou, Mingxin, Yuan, Xiaofang, Huang, Shuqiao, Wang, Yaonan
Deep reinforcement learning (DRL) methods have recently shown promise in path planning tasks. However, when dealing with global planning tasks, these methods face serious challenges such as poor convergence and generalization. To this end, we propose an attention-enhanced DRL method called LOPA (Learn Once Plan Arbitrarily) in this paper. Firstly, we analyze the reasons of these problems from the perspective of DRL's observation, revealing that the traditional design causes DRL to be interfered by irrelevant map information. Secondly, we develop the LOPA which utilizes a novel attention-enhanced mechanism to attain an improved attention capability towards the key information of the observation. Such a mechanism is realized by two steps: (1) an attention model is built to transform the DRL's observation into two dynamic views: local and global, significantly guiding the LOPA to focus on the key information on the given maps; (2) a dual-channel network is constructed to process these two views and integrate them to attain an improved reasoning capability. The LOPA is validated via multi-objective global path planning experiments. The result suggests the LOPA has improved convergence and generalization performance as well as great path planning efficiency.
Deep Reinforcement Learning-based Multi-objective Path Planning on the Off-road Terrain Environment for Ground Vehicles
Huang, Shuqiao, Wu, Xiru, Huang, Guoming
Due to the vastly different energy consumption between up-slope and down-slope, a path with the shortest length on a complex off-road terrain environment (2.5D map) is not always the path with the least energy consumption. For any energy-sensitive vehicle, realizing a good trade-off between distance and energy consumption in 2.5D path planning is significantly meaningful. In this paper, we propose a deep reinforcement learning-based 2.5D multi-objective path planning method (DMOP). The DMOP can efficiently find the desired path in three steps: (1) Transform the high-resolution 2.5D map into a small-size map. (2) Use a trained deep Q network (DQN) to find the desired path on the small-size map. (3) Build the planned path to the original high-resolution map using a path-enhanced method. In addition, the hybrid exploration strategy and reward shaping theory are applied to train the DQN. The reward function is constructed with the information of terrain, distance, and border. Simulation results show that the proposed method can finish the multi-objective 2.5D path planning task with significantly high efficiency. With similar planned paths, the speed of the proposed method is more than 100 times faster than that of the A* method and 30 times faster than that of H3DM method. Also, simulation proves that the method has powerful reasoning capability that enables it to perform arbitrary untrained planning tasks.