Huang, Shuangping
Perception and Semantic Aware Regularization for Sequential Confidence Calibration
Peng, Zhenghua, Luo, Yu, Chen, Tianshui, Xu, Keke, Huang, Shuangping
Deep sequence recognition (DSR) models receive increasing attention due to their superior application to various applications. Most DSR models use merely the target sequences as supervision without considering other related sequences, leading to over-confidence in their predictions. The DSR models trained with label smoothing regularize labels by equally and independently smoothing each token, reallocating a small value to other tokens for mitigating overconfidence. However, they do not consider tokens/sequences correlations that may provide more effective information to regularize training and thus lead to sub-optimal performance. In this work, we find tokens/sequences with high perception and semantic correlations with the target ones contain more correlated and effective information and thus facilitate more effective regularization. To this end, we propose a Perception and Semantic aware Sequence Regularization framework, which explore perceptively and semantically correlated tokens/sequences as regularization. Specifically, we introduce a semantic context-free recognition and a language model to acquire similar sequences with high perceptive similarities and semantic correlation, respectively. Moreover, over-confidence degree varies across samples according to their difficulties. Thus, we further design an adaptive calibration intensity module to compute a difficulty score for each samples to obtain finer-grained regularization. Extensive experiments on canonical sequence recognition tasks, including scene text and speech recognition, demonstrate that our method sets novel state-of-the-art results. Code is available at https://github.com/husterpzh/PSSR.
Context-Aware Selective Label Smoothing for Calibrating Sequence Recognition Model
Huang, Shuangping, Luo, Yu, Zhuang, Zhenzhou, Yu, Jin-Gang, He, Mengchao, Wang, Yongpan
Despite the success of deep neural network (DNN) on sequential data (i.e., scene text and speech) recognition, it suffers from the over-confidence problem mainly due to overfitting in training with the cross-entropy loss, which may make the decision-making less reliable. Confidence calibration has been recently proposed as one effective solution to this problem. Nevertheless, the majority of existing confidence calibration methods aims at non-sequential data, which is limited if directly applied to sequential data since the intrinsic contextual dependency in sequences or the class-specific statistical prior is seldom exploited. To the end, we propose a Context-Aware Selective Label Smoothing (CASLS) method for calibrating sequential data. The proposed CASLS fully leverages the contextual dependency in sequences to construct confusion matrices of contextual prediction statistics over different classes. Class-specific error rates are then used to adjust the weights of smoothing strength in order to achieve adaptive calibration. Experimental results on sequence recognition tasks, including scene text recognition and speech recognition, demonstrate that our method can achieve the state-of-the-art performance.
AGTGAN: Unpaired Image Translation for Photographic Ancient Character Generation
Huang, Hongxiang, Yang, Daihui, Dai, Gang, Han, Zhen, Wang, Yuyi, Lam, Kin-Man, Yang, Fan, Huang, Shuangping, Liu, Yongge, He, Mengchao
The study of ancient writings has great value for archaeology and philology. Essential forms of material are photographic characters, but manual photographic character recognition is extremely time-consuming and expertise-dependent. Automatic classification is therefore greatly desired. However, the current performance is limited due to the lack of annotated data. Data generation is an inexpensive but useful solution for data scarcity. Nevertheless, the diverse glyph shapes and complex background textures of photographic ancient characters make the generation task difficult, leading to the unsatisfactory results of existing methods. In this paper, we propose an unsupervised generative adversarial network called AGTGAN. By the explicit global and local glyph shape style modeling followed by the stroke-aware texture transfer, as well as an associate adversarial learning mechanism, our method can generate characters with diverse glyphs and realistic textures. We evaluate our approach on the photographic ancient character datasets, e.g., OBC306 and CSDD. Our method outperforms the state-of-the-art approaches in various metrics and performs much better in terms of the diversity and authenticity of generated samples. With our generated images, experiments on the largest photographic oracle bone character dataset show that our method can achieve a significant increase in classification accuracy, up to 16.34%.