Huang, Shiyu
Can LLM Watermarks Robustly Prevent Unauthorized Knowledge Distillation?
Pan, Leyi, Liu, Aiwei, Huang, Shiyu, Lu, Yijian, Hu, Xuming, Wen, Lijie, King, Irwin, Yu, Philip S.
The radioactive nature of Large Language Model (LLM) watermarking enables the detection of watermarks inherited by student models when trained on the outputs of watermarked teacher models, making it a promising tool for preventing unauthorized knowledge distillation. However, the robustness of watermark radioactivity against adversarial actors remains largely unexplored. In this paper, we investigate whether student models can acquire the capabilities of teacher models through knowledge distillation while avoiding watermark inheritance. We propose two categories of watermark removal approaches: pre-distillation removal through untargeted and targeted training data paraphrasing (UP and TP), and post-distillation removal through inference-time watermark neutralization (WN). Extensive experiments across multiple model pairs, watermarking schemes and hyper-parameter settings demonstrate that both TP and WN thoroughly eliminate inherited watermarks, with WN achieving this while maintaining knowledge transfer efficiency and low computational overhead. Given the ongoing deployment of watermarking techniques in production LLMs, these findings emphasize the urgent need for more robust defense strategies. Our code is available at https://github.com/THU-BPM/Watermark-Radioactivity-Attack.
ICT: Image-Object Cross-Level Trusted Intervention for Mitigating Object Hallucination in Large Vision-Language Models
Chen, Junzhe, Zhang, Tianshu, Huang, Shiyu, Niu, Yuwei, Zhang, Linfeng, Wen, Lijie, Hu, Xuming
Despite the recent breakthroughs achieved by Large Vision Language Models (LVLMs) in understanding and responding to complex visual-textual contexts, their inherent hallucination tendencies limit their practical application in real-world scenarios that demand high levels of precision. Existing methods typically either fine-tune the LVLMs using additional data, which incurs extra costs in manual annotation and computational resources or perform comparisons at the decoding stage, which may eliminate useful language priors for reasoning while introducing inference time overhead. Therefore, we propose ICT, a lightweight, training-free method that calculates an intervention direction to shift the model's focus towards different levels of visual information, enhancing its attention to high-level and fine-grained visual details. During the forward pass stage, the intervention is applied to the attention heads that encode the overall image information and the fine-grained object details, effectively mitigating the phenomenon of overly language priors, and thereby alleviating hallucinations. Extensive experiments demonstrate that ICT achieves strong performance with a small amount of data and generalizes well across different datasets and models. Our code will be public.
DreamPolish: Domain Score Distillation With Progressive Geometry Generation
Cheng, Yean, Cai, Ziqi, Ding, Ming, Zheng, Wendi, Huang, Shiyu, Dong, Yuxiao, Tang, Jie, Shi, Boxin
We introduce DreamPolish, a text-to-3D generation model that excels in producing refined geometry and high-quality textures. In the geometry construction phase, our approach leverages multiple neural representations to enhance the stability of the synthesis process. Instead of relying solely on a view-conditioned diffusion prior in the novel sampled views, which often leads to undesired artifacts in the geometric surface, we incorporate an additional normal estimator to polish the geometry details, conditioned on viewpoints with varying field-of-views. We propose to add a surface polishing stage with only a few training steps, which can effectively refine the artifacts attributed to limited guidance from previous stages and produce 3D objects with more desirable geometry. The key topic of texture generation using pretrained text-to-image models is to find a suitable domain in the vast latent distribution of these models that contains photorealistic and consistent renderings. In the texture generation phase, we introduce a novel score distillation objective, namely domain score distillation (DSD), to guide neural representations toward such a domain. We draw inspiration from the classifier-free guidance (CFG) in textconditioned image generation tasks and show that CFG and variational distribution guidance represent distinct aspects in gradient guidance and are both imperative domains for the enhancement of texture quality. Extensive experiments show our proposed model can produce 3D assets with polished surfaces and photorealistic textures, outperforming existing state-of-the-art methods.
LVBench: An Extreme Long Video Understanding Benchmark
Wang, Weihan, He, Zehai, Hong, Wenyi, Cheng, Yean, Zhang, Xiaohan, Qi, Ji, Huang, Shiyu, Xu, Bin, Dong, Yuxiao, Ding, Ming, Tang, Jie
Recent progress in multimodal large language models has markedly enhanced the understanding of short videos (typically under one minute), and several evaluation datasets have emerged accordingly. However, these advancements fall short of meeting the demands of real-world applications such as embodied intelligence for long-term decision-making, in-depth movie reviews and discussions, and live sports commentary, all of which require comprehension of long videos spanning several hours. To address this gap, we introduce LVBench, a benchmark specifically designed for long video understanding. Our dataset comprises publicly sourced videos and encompasses a diverse set of tasks aimed at long video comprehension and information extraction. LVBench is designed to challenge multimodal models to demonstrate long-term memory and extended comprehension capabilities. Our extensive evaluations reveal that current multimodal models still underperform on these demanding long video understanding tasks. Through LVBench, we aim to spur the development of more advanced models capable of tackling the complexities of long video comprehension. Our data and code are publicly available at: https://lvbench.github.io/.
MQE: Unleashing the Power of Interaction with Multi-agent Quadruped Environment
Xiong, Ziyan, Chen, Bo, Huang, Shiyu, Tu, Wei-Wei, He, Zhaofeng, Gao, Yang
The advent of deep reinforcement learning (DRL) has significantly advanced the field of robotics, particularly in the control and coordination of quadruped robots. However, the complexity of real-world tasks often necessitates the deployment of multi-robot systems capable of sophisticated interaction and collaboration. To address this need, we introduce the Multi-agent Quadruped Environment (MQE), a novel platform designed to facilitate the development and evaluation of multi-agent reinforcement learning (MARL) algorithms in realistic and dynamic scenarios. MQE emphasizes complex interactions between robots and objects, hierarchical policy structures, and challenging evaluation scenarios that reflect real-world applications. We present a series of collaborative and competitive tasks within MQE, ranging from simple coordination to complex adversarial interactions, and benchmark state-of-the-art MARL algorithms. Our findings indicate that hierarchical reinforcement learning can simplify task learning, but also highlight the need for advanced algorithms capable of handling the intricate dynamics of multi-agent interactions. MQE serves as a stepping stone towards bridging the gap between simulation and practical deployment, offering a rich environment for future research in multi-agent systems and robot learning. For open-sourced code and more details of MQE, please refer to https://ziyanx02.github.io/multiagent-quadruped-environment/ .
LLMArena: Assessing Capabilities of Large Language Models in Dynamic Multi-Agent Environments
Chen, Junzhe, Hu, Xuming, Liu, Shuodi, Huang, Shiyu, Tu, Wei-Wei, He, Zhaofeng, Wen, Lijie
Recent advancements in large language models (LLMs) have revealed their potential for achieving autonomous agents possessing human-level intelligence. However, existing benchmarks for evaluating LLM Agents either use static datasets, potentially leading to data leakage or focus only on single-agent scenarios, overlooking the complexities of multi-agent interactions. There is a lack of a benchmark that evaluates the diverse capabilities of LLM agents in multi-agent, dynamic environments. To this end, we introduce LLMArena, a novel and easily extensible framework for evaluating the diverse capabilities of LLM in multi-agent dynamic environments. LLMArena encompasses seven distinct gaming environments, employing Trueskill scoring to assess crucial abilities in LLM agents, including spatial reasoning, strategic planning, numerical reasoning, risk assessment, communication, opponent modeling, and team collaboration. We conduct an extensive experiment and human evaluation among different sizes and types of LLMs, showing that LLMs still have a significant journey ahead in their development towards becoming fully autonomous agents, especially in opponent modeling and team collaboration. We hope LLMArena could guide future research towards enhancing these capabilities in LLMs, ultimately leading to more sophisticated and practical applications in dynamic, multi-agent settings. The code and data will be available.
AutoSAT: Automatically Optimize SAT Solvers via Large Language Models
Sun, Yiwen, Zhang, Xianyin, Huang, Shiyu, Cai, Shaowei, Zhang, Bing-Zhen, Wei, Ke
Heuristics are crucial in SAT solvers, while no heuristic rules are suitable for all problem instances. Therefore, it typically requires to refine specific solvers for specific problem instances. In this context, we present AutoSAT, a novel framework for automatically optimizing heuristics in SAT solvers. AutoSAT is based on Large Large Models (LLMs) which is able to autonomously generate code, conduct evaluation, then utilize the feedback to further optimize heuristics, thereby reducing human intervention and enhancing solver capabilities. AutoSAT operates on a plug-and-play basis, eliminating the need for extensive preliminary setup and model training, and fosters a Chain of Thought collaborative process with fault-tolerance, ensuring robust heuristic optimization. Extensive experiments on a Conflict-Driven Clause Learning (CDCL) solver demonstrates the overall superior performance of AutoSAT, especially in solving some specific SAT problem instances.
DGPO: Discovering Multiple Strategies with Diversity-Guided Policy Optimization
Chen, Wentse, Huang, Shiyu, Chiang, Yuan, Pearce, Tim, Tu, Wei-Wei, Chen, Ting, Zhu, Jun
Most reinforcement learning algorithms seek a single optimal strategy that solves a given task. However, it can often be valuable to learn a diverse set of solutions, for instance, to make an agent's interaction with users more engaging, or improve the robustness of a policy to an unexpected perturbance. We propose Diversity-Guided Policy Optimization (DGPO), an on-policy algorithm that discovers multiple strategies for solving a given task. Unlike prior work, it achieves this with a shared policy network trained over a single run. Specifically, we design an intrinsic reward based on an information-theoretic diversity objective. Our final objective alternately constraints on the diversity of the strategies and on the extrinsic reward. We solve the constrained optimization problem by casting it as a probabilistic inference task and use policy iteration to maximize the derived lower bound. Experimental results show that our method efficiently discovers diverse strategies in a wide variety of reinforcement learning tasks. Compared to baseline methods, DGPO achieves comparable rewards, while discovering more diverse strategies, and often with better sample efficiency.
OpenRL: A Unified Reinforcement Learning Framework
Huang, Shiyu, Chen, Wentse, Sun, Yiwen, Bie, Fuqing, Tu, Wei-Wei
We present OpenRL, an advanced reinforcement learning (RL) framework designed to accommodate a diverse array of tasks, from single-agent challenges to complex multi-agent systems. OpenRL's robust support for self-play training empowers agents to develop advanced strategies in competitive settings. Notably, OpenRL integrates Natural Language Processing (NLP) with RL, enabling researchers to address a combination of RL training and language-centric tasks effectively. Leveraging PyTorch's robust capabilities, OpenRL exemplifies modularity and a user-centric approach. It offers a universal interface that simplifies the user experience for beginners while maintaining the flexibility experts require for innovation and algorithm development. This equilibrium enhances the framework's practicality, adaptability, and scalability, establishing a new standard in RL research.
SwiftSage: A Generative Agent with Fast and Slow Thinking for Complex Interactive Tasks
Lin, Bill Yuchen, Fu, Yicheng, Yang, Karina, Brahman, Faeze, Huang, Shiyu, Bhagavatula, Chandra, Ammanabrolu, Prithviraj, Choi, Yejin, Ren, Xiang
We introduce SwiftSage, a novel agent framework inspired by the dual-process theory of human cognition, designed to excel in action planning for complex interactive reasoning tasks. SwiftSage integrates the strengths of behavior cloning and prompting large language models (LLMs) to enhance task completion performance. The framework comprises two primary modules: the Swift module, representing fast and intuitive thinking, and the Sage module, emulating deliberate thought processes. The Swift module is a small encoder-decoder LM fine-tuned on the oracle agent's action trajectories, while the Sage module employs LLMs such as GPT-4 for subgoal planning and grounding. We develop a heuristic method to harmoniously integrate the two modules, resulting in a more efficient and robust problem-solving process. In 30 tasks from the ScienceWorld benchmark, SwiftSage significantly outperforms other methods such as SayCan, ReAct, and Reflexion, demonstrating its effectiveness in solving complex interactive tasks.