Huang, Ruoyun
Towards Automated Choreographing of Web Services Using Planning
Zou, Guobing (Shanghai University) | Chen, Yixin (Washington University in St. Louis) | Xu, You (Washington University in St. Louis) | Huang, Ruoyun (Washington University in St. Louis) | Xiang, Yang (Tongji University)
For Web service composition, choreography has recently received great attention and demonstrated a few key advantages over orchestration such as distributed control, fairness, data efficiency, and scalability. Automated design of choreography plans, especially distributed plans for multiple roles, is more complex and has not been studied before. Existing work requires manual generation assisted by model checking. In this paper, we propose a novel planning-based approach that can automatically convert a given composition task to a distributed choreography specification. Although planning has been used for orchestration, it is difficult to use planning for choreography, as it involves decentralized control, concurrent workflows, and contingency. We propose a few novel techniques, including compilation of contingencies, dependency graph analysis, and communication control, to handle these characteristics using planning. We theoretically show the correctness of this approach and empirically evaluate its practicability.
Theory and Algorithms for Partial Order Based Reduction in Planning
Xu, You, Chen, Yixin, Lu, Qiang, Huang, Ruoyun
Search is a major technique for planning. It amounts to exploring a state space of planning domains typically modeled as a directed graph. However, prohibitively large sizes of the search space make search expensive. Developing better heuristic functions has been the main technique for improving search efficiency. Nevertheless, recent studies have shown that improving heuristics alone has certain fundamental limits on improving search efficiency. Recently, a new direction of research called partial order based reduction (POR) has been proposed as an alternative to improving heuristics. POR has shown promise in speeding up searches. POR has been extensively studied in model checking research and is a key enabling technique for scalability of model checking systems. Although the POR theory has been extensively studied in model checking, it has never been developed systematically for planning before. In addition, the conditions for POR in the model checking theory are abstract and not directly applicable in planning. Previous works on POR algorithms for planning did not establish the connection between these algorithms and existing theory in model checking. In this paper, we develop a theory for POR in planning. The new theory we develop connects the stubborn set theory in model checking and POR methods in planning. We show that previous POR algorithms in planning can be explained by the new theory. Based on the new theory, we propose a new, stronger POR algorithm. Experimental results on various planning domains show further search cost reduction using the new algorithm.
A Novel Transition Based Encoding Scheme for Planning as Satisfiability
Huang, Ruoyun (Washington University in St. Louis) | Chen, Yixin (Washington University in St. Louis) | Zhang, Weixiong (Washington University in St. Louis)
Planning as satisfiability is a principal approach to planning with many eminent advantages. The existing planning as satisfiability techniques usually use encodings compiled from the STRIPS formalism. We introduce a novel SAT encoding scheme based on the SAS+ formalism. It exploits the structural information in the SAS+ formalism, resulting in more compact SAT instances and reducing the number of clauses by up to 50 fold. Our results show that this encoding scheme improves upon the STRIPS-based encoding, in terms of both time and memory efficiency.