Huang, Qian
BIGCity: A Universal Spatiotemporal Model for Unified Trajectory and Traffic State Data Analysis
Yu, Xie, Wang, Jingyuan, Yang, Yifan, Huang, Qian, Qu, Ke
Typical dynamic ST data includes trajectory data (representing individual-level mobility) and traffic state data (representing population-level mobility). Traditional studies often treat trajectory and traffic state data as distinct, independent modalities, each tailored to specific tasks within a single modality. However, real-world applications, such as navigation apps, require joint analysis of trajectory and traffic state data. Treating these data types as two separate domains can lead to suboptimal model performance. Although recent advances in ST data pre-training and ST foundation models aim to develop universal models for ST data analysis, most existing models are "multi-task, solo-data modality" (MTSM), meaning they can handle multiple tasks within either trajectory data or traffic state data, but not both simultaneously. To address this gap, this paper introduces BIGCity, the first multi-task, multi-data modality (MTMD) model for ST data analysis. The model targets two key challenges in designing an MTMD ST model: (1) unifying the representations of different ST data modalities, and (2) unifying heterogeneous ST analysis tasks. To overcome the first challenge, BIGCity introduces a novel ST-unit that represents both trajectories and traffic states in a unified format. Additionally, for the second challenge, BIGCity adopts a tunable large model with ST task-oriented prompt, enabling it to perform a range of heterogeneous tasks without the need for fine-tuning. Extensive experiments on real-world datasets demonstrate that BIGCity achieves state-of-the-art performance across 8 tasks, outperforming 18 baselines. To the best of our knowledge, BIGCity is the first model capable of handling both trajectories and traffic states for diverse heterogeneous tasks. Our code are available at https://github.com/bigscity/BIGCity
The application of GPT-4 in grading design university students' assignment and providing feedback: An exploratory study
Huang, Qian, Willems, Thijs, Poon, King Wang
This study aims to investigate whether GPT-4 can effectively grade assignments for design university students and provide useful feedback. In design education, assignments do not have a single correct answer and often involve solving an open-ended design problem. This subjective nature of design projects often leads to grading problems,as grades can vary between different raters,for instance instructor from engineering background or architecture background. This study employs an iterative research approach in developing a Custom GPT with the aim of achieving more reliable results and testing whether it can provide design students with constructive feedback. The findings include: First,through several rounds of iterations the inter-reliability between GPT and human raters reached a level that is generally accepted by educators. This indicates that by providing accurate prompts to GPT,and continuously iterating to build a Custom GPT, it can be used to effectively grade students' design assignments, serving as a reliable complement to human raters. Second, the intra-reliability of GPT's scoring at different times is between 0.65 and 0.78. This indicates that, with adequate instructions, a Custom GPT gives consistent results which is a precondition for grading students. As consistency and comparability are the two main rules to ensure the reliability of educational assessment, this study has looked at whether a Custom GPT can be developed that adheres to these two rules. We finish the paper by testing whether Custom GPT can provide students with useful feedback and reflecting on how educators can develop and iterate a Custom GPT to serve as a complementary rater.
Exploring the Use of ChatGPT for a Systematic Literature Review: a Design-Based Research
Huang, Qian, Wang, Qiyun
ChatGPT has been used in several educational contexts,including learning, teaching and research. It also has potential to conduct the systematic literature review (SLR). However, there are limited empirical studies on how to use ChatGPT in conducting a SLR. Based on a SLR published,this study used ChatGPT to conduct a SLR of the same 33 papers in a design-based approach, to see what the differences are by comparing the reviews' results,and to answer: To what extent can ChatGPT conduct SLR? What strategies can human researchers utilize to structure prompts for ChatGPT that enhance the reliability and validity of a SLR? This study found that ChatGPT could conduct a SLR. It needs detailed and accurate prompts to analyze the literature. It also has limitations. Guiding principles are summarized from this study for researchers to follow when they need to conduct SLRs using ChatGPT.
BioDiscoveryAgent: An AI Agent for Designing Genetic Perturbation Experiments
Roohani, Yusuf, Vora, Jian, Huang, Qian, Steinhart, Zachary, Marson, Alexander, Liang, Percy, Leskovec, Jure
Agents based on large language models have shown great potential in accelerating scientific discovery by leveraging their rich background knowledge and reasoning capabilities. Here, we develop BioDiscoveryAgent, an agent that designs new experiments, reasons about their outcomes, and efficiently navigates the hypothesis space to reach desired solutions. We demonstrate our agent on the problem of designing genetic perturbation experiments, where the aim is to find a small subset out of many possible genes that, when perturbed, result in a specific phenotype (e.g., cell growth). Utilizing its biological knowledge, BioDiscoveryAgent can uniquely design new experiments without the need to train a machine learning model or explicitly design an acquisition function. Moreover, BioDiscoveryAgent achieves an average of 18% improvement in detecting desired phenotypes across five datasets, compared to existing Bayesian optimization baselines specifically trained for this task. Our evaluation includes one dataset that is unpublished, ensuring it is not part of the language model's training data. Additionally, BioDiscoveryAgent predicts gene combinations to perturb twice as accurately as a random baseline, a task so far not explored in the context of closed-loop experiment design. The agent also has access to tools for searching the biomedical literature, executing code to analyze biological datasets, and prompting another agent to critically evaluate its predictions. Overall, BioDiscoveryAgent is interpretable at every stage, representing an accessible new paradigm in the computational design of biological experiments with the potential to augment scientists' capabilities.
STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases
Wu, Shirley, Zhao, Shiyu, Yasunaga, Michihiro, Huang, Kexin, Cao, Kaidi, Huang, Qian, Ioannidis, Vassilis N., Subbian, Karthik, Zou, James, Leskovec, Jure
Answering real-world complex queries, such as complex product search, often requires accurate retrieval from semi-structured knowledge bases that involve blend of unstructured (e.g., textual descriptions of products) and structured (e.g., entity relations of products) information. However, previous works have mostly studied textual and relational retrieval tasks as separate topics. To address the gap, we develop STARK, a large-scale Semi-structure retrieval benchmark on Textual and Relational K nowledge Bases. Our benchmark covers three domains/datasets: product search, academic paper search, and queries in precision medicine. We design a novel pipeline to synthesize realistic user queries that integrate diverse relational information and complex textual properties, together with their ground-truth answers (items). We conduct rigorous human evaluation to validate the quality of our synthesized queries. We further enhance the benchmark with high-quality human-generated queries to provide an authentic reference. STARK serves as a comprehensive testbed for evaluating the performance of retrieval systems driven by large language models (LLMs). Our experiments suggest that STARK presents significant challenges to the current retrieval and LLM systems, indicating the demand for building more capable retrieval systems. The benchmark data and code are available on https://github.com/snap-stanford/stark.
Select2Col: Leveraging Spatial-Temporal Importance of Semantic Information for Efficient Collaborative Perception
Liu, Yuntao, Huang, Qian, Li, Rongpeng, Chen, Xianfu, Zhao, Zhifeng, Zhao, Shuyuan, Zhu, Yongdong, Zhang, Honggang
Collaborative perception by leveraging the shared semantic information plays a crucial role in overcoming the individual limitations of isolated agents. However, existing collaborative perception methods tend to focus solely on the spatial features of semantic information, while neglecting the importance of the temporal dimension. Consequently, the potential benefits of collaboration remain underutilized. In this article, we propose Select2Col, a novel collaborative perception framework that takes into account the \underline{s}patial-t\underline{e}mpora\underline{l} importanc\underline{e} of semanti\underline{c} informa\underline{t}ion. Within the Select2Col, we develop a collaborator selection method that utilizes a lightweight graph neural network (GNN) to estimate the importance of semantic information (IoSI) of each collaborator in enhancing perception performance, thereby identifying contributive collaborators while excluding those that potentially bring negative impact. Moreover, we present a semantic information fusion algorithm called HPHA (historical prior hybrid attention), which integrates multi-scale attention and short-term attention modules to capture the IoSI in feature representation from the spatial and temporal dimensions respectively, and assigns IoSI-consistent weights for efficient fusion of information from selected collaborators. Extensive experiments on three open datasets demonstrate that our proposed Select2Col significantly improves the perception performance compared to state-of-the-art approaches. The code associated with this research is publicly available at https://github.com/huangqzj/Select2Col/.
Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems
Zhang, Xuan, Wang, Limei, Helwig, Jacob, Luo, Youzhi, Fu, Cong, Xie, Yaochen, Liu, Meng, Lin, Yuchao, Xu, Zhao, Yan, Keqiang, Adams, Keir, Weiler, Maurice, Li, Xiner, Fu, Tianfan, Wang, Yucheng, Yu, Haiyang, Xie, YuQing, Fu, Xiang, Strasser, Alex, Xu, Shenglong, Liu, Yi, Du, Yuanqi, Saxton, Alexandra, Ling, Hongyi, Lawrence, Hannah, Stรคrk, Hannes, Gui, Shurui, Edwards, Carl, Gao, Nicholas, Ladera, Adriana, Wu, Tailin, Hofgard, Elyssa F., Tehrani, Aria Mansouri, Wang, Rui, Daigavane, Ameya, Bohde, Montgomery, Kurtin, Jerry, Huang, Qian, Phung, Tuong, Xu, Minkai, Joshi, Chaitanya K., Mathis, Simon V., Azizzadenesheli, Kamyar, Fang, Ada, Aspuru-Guzik, Alรกn, Bekkers, Erik, Bronstein, Michael, Zitnik, Marinka, Anandkumar, Anima, Ermon, Stefano, Liรฒ, Pietro, Yu, Rose, Gรผnnemann, Stephan, Leskovec, Jure, Ji, Heng, Sun, Jimeng, Barzilay, Regina, Jaakkola, Tommi, Coley, Connor W., Qian, Xiaoning, Qian, Xiaofeng, Smidt, Tess, Ji, Shuiwang
Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural sciences. Today, AI has started to advance natural sciences by improving, accelerating, and enabling our understanding of natural phenomena at a wide range of spatial and temporal scales, giving rise to a new area of research known as AI for science (AI4Science). Being an emerging research paradigm, AI4Science is unique in that it is an enormous and highly interdisciplinary area. Thus, a unified and technical treatment of this field is needed yet challenging. This work aims to provide a technically thorough account of a subarea of AI4Science; namely, AI for quantum, atomistic, and continuum systems. These areas aim at understanding the physical world from the subatomic (wavefunctions and electron density), atomic (molecules, proteins, materials, and interactions), to macro (fluids, climate, and subsurface) scales and form an important subarea of AI4Science. A unique advantage of focusing on these areas is that they largely share a common set of challenges, thereby allowing a unified and foundational treatment. A key common challenge is how to capture physics first principles, especially symmetries, in natural systems by deep learning methods. We provide an in-depth yet intuitive account of techniques to achieve equivariance to symmetry transformations. We also discuss other common technical challenges, including explainability, out-of-distribution generalization, knowledge transfer with foundation and large language models, and uncertainty quantification. To facilitate learning and education, we provide categorized lists of resources that we found to be useful. We strive to be thorough and unified and hope this initial effort may trigger more community interests and efforts to further advance AI4Science.
Benchmarking Large Language Models As AI Research Agents
Huang, Qian, Vora, Jian, Liang, Percy, Leskovec, Jure
Scientific experimentation involves an iterative process of creating hypotheses, designing experiments, running experiments, and analyzing the results. Can we build AI research agents to perform these long-horizon tasks? To take a step towards building and evaluating research agents on such open-ended decision-making tasks, we focus on the problem of machine learning engineering: given a task description and a dataset, build a high-performing model. In this paper, we propose MLAgentBench, a suite of ML tasks for benchmarking AI research agents. Agents can perform actions like reading/writing files, executing code, and inspecting outputs. With these actions, agents could run experiments, analyze the results, and modify the code of entire machine learning pipelines, such as data processing, architecture, training processes, etc. The benchmark then automatically evaluates the agent's performance objectively over various metrics related to performance and efficiency. We also design an LLM-based research agent to automatically perform experimentation loops in such an environment. Empirically, we find that a GPT-4-based research agent can feasibly build compelling ML models over many tasks in MLAgentBench, displaying highly interpretable plans and actions. However, the success rates vary considerably; they span from almost 90\% on well-established older datasets to as low as 10\% on recent Kaggle Challenges -- unavailable during the LLM model's pretraining -- and even 0\% on newer research challenges like BabyLM. Finally, we identify several key challenges for LLM-based research agents such as long-term planning and hallucination. Our code is released at https://github.com/snap-stanford/MLAgentBench.
Holistic Evaluation of Language Models
Liang, Percy, Bommasani, Rishi, Lee, Tony, Tsipras, Dimitris, Soylu, Dilara, Yasunaga, Michihiro, Zhang, Yian, Narayanan, Deepak, Wu, Yuhuai, Kumar, Ananya, Newman, Benjamin, Yuan, Binhang, Yan, Bobby, Zhang, Ce, Cosgrove, Christian, Manning, Christopher D., Rรฉ, Christopher, Acosta-Navas, Diana, Hudson, Drew A., Zelikman, Eric, Durmus, Esin, Ladhak, Faisal, Rong, Frieda, Ren, Hongyu, Yao, Huaxiu, Wang, Jue, Santhanam, Keshav, Orr, Laurel, Zheng, Lucia, Yuksekgonul, Mert, Suzgun, Mirac, Kim, Nathan, Guha, Neel, Chatterji, Niladri, Khattab, Omar, Henderson, Peter, Huang, Qian, Chi, Ryan, Xie, Sang Michael, Santurkar, Shibani, Ganguli, Surya, Hashimoto, Tatsunori, Icard, Thomas, Zhang, Tianyi, Chaudhary, Vishrav, Wang, William, Li, Xuechen, Mai, Yifan, Zhang, Yuhui, Koreeda, Yuta
Language models (LMs) are becoming the foundation for almost all major language technologies, but their capabilities, limitations, and risks are not well understood. We present Holistic Evaluation of Language Models (HELM) to improve the transparency of language models. First, we taxonomize the vast space of potential scenarios (i.e. use cases) and metrics (i.e. desiderata) that are of interest for LMs. Then we select a broad subset based on coverage and feasibility, noting what's missing or underrepresented (e.g. question answering for neglected English dialects, metrics for trustworthiness). Second, we adopt a multi-metric approach: We measure 7 metrics (accuracy, calibration, robustness, fairness, bias, toxicity, and efficiency) for each of 16 core scenarios when possible (87.5% of the time). This ensures metrics beyond accuracy don't fall to the wayside, and that trade-offs are clearly exposed. We also perform 7 targeted evaluations, based on 26 targeted scenarios, to analyze specific aspects (e.g. reasoning, disinformation). Third, we conduct a large-scale evaluation of 30 prominent language models (spanning open, limited-access, and closed models) on all 42 scenarios, 21 of which were not previously used in mainstream LM evaluation. Prior to HELM, models on average were evaluated on just 17.9% of the core HELM scenarios, with some prominent models not sharing a single scenario in common. We improve this to 96.0%: now all 30 models have been densely benchmarked on the same core scenarios and metrics under standardized conditions. Our evaluation surfaces 25 top-level findings. For full transparency, we release all raw model prompts and completions publicly for further analysis, as well as a general modular toolkit. We intend for HELM to be a living benchmark for the community, continuously updated with new scenarios, metrics, and models.
Enhancing Nucleus Segmentation with HARU-Net: A Hybrid Attention Based Residual U-Blocks Network
Chen, Junzhou, Huang, Qian, Chen, Yulin, Qian, Linyi, Yu, Chengyuan
Nucleus image segmentation is a crucial step in the analysis, pathological diagnosis, and classification, which heavily relies on the quality of nucleus segmentation. However, the complexity of issues such as variations in nucleus size, blurred nucleus contours, uneven staining, cell clustering, and overlapping cells poses significant challenges. Current methods for nucleus segmentation primarily rely on nuclear morphology or contour-based approaches. Nuclear morphology-based methods exhibit limited generalization ability and struggle to effectively predict irregular-shaped nuclei, while contour-based extraction methods face challenges in accurately segmenting overlapping nuclei. To address the aforementioned issues, we propose a dual-branch network using hybrid attention based residual U-blocks for nucleus instance segmentation. The network simultaneously predicts target information and target contours. Additionally, we introduce a post-processing method that combines the target information and target contours to distinguish overlapping nuclei and generate an instance segmentation image. Within the network, we propose a context fusion block (CF-block) that effectively extracts and merges contextual information from the network. Extensive quantitative evaluations are conducted to assess the performance of our method. Experimental results demonstrate the superior performance of the proposed method compared to state-of-the-art approaches on the BNS, MoNuSeg, CoNSeg, and CPM-17 datasets.