Goto

Collaborating Authors

 Huang, Ningyuan


CAO-RONet: A Robust 4D Radar Odometry with Exploring More Information from Low-Quality Points

arXiv.org Artificial Intelligence

Recently, 4D millimetre-wave radar exhibits more stable perception ability than LiDAR and camera under adverse conditions (e.g. rain and fog). However, low-quality radar points hinder its application, especially the odometry task that requires a dense and accurate matching. To fully explore the potential of 4D radar, we introduce a learning-based odometry framework, enabling robust ego-motion estimation from finite and uncertain geometry information. First, for sparse radar points, we propose a local completion to supplement missing structures and provide denser guideline for aligning two frames. Then, a context-aware association with a hierarchical structure flexibly matches points of different scales aided by feature similarity, and improves local matching consistency through correlation balancing. Finally, we present a window-based optimizer that uses historical priors to establish a coupling state estimation and correct errors of inter-frame matching. The superiority of our algorithm is confirmed on View-of-Delft dataset, achieving around a 50% performance improvement over previous approaches and delivering accuracy on par with LiDAR odometry. Our code will be available.


Learning functions on symmetric matrices and point clouds via lightweight invariant features

arXiv.org Artificial Intelligence

In this work, we present a mathematical formulation for machine learning of (1) functions on symmetric matrices that are invariant with respect to the action of permutations by conjugation, and (2) functions on point clouds that are invariant with respect to rotations, reflections, and permutations of the points. To achieve this, we construct $O(n^2)$ invariant features derived from generators for the field of rational functions on $n\times n$ symmetric matrices that are invariant under joint permutations of rows and columns. We show that these invariant features can separate all distinct orbits of symmetric matrices except for a measure zero set; such features can be used to universally approximate invariant functions on almost all weighted graphs. For point clouds in a fixed dimension, we prove that the number of invariant features can be reduced, generically without losing expressivity, to $O(n)$, where $n$ is the number of points. We combine these invariant features with DeepSets to learn functions on symmetric matrices and point clouds with varying sizes. We empirically demonstrate the feasibility of our approach on molecule property regression and point cloud distance prediction.


Approximately Equivariant Graph Networks

arXiv.org Machine Learning

Graph neural networks (GNNs) are commonly described as being permutation equivariant with respect to node relabeling in the graph. This symmetry of GNNs is often compared to the translation equivariance of Euclidean convolution neural networks (CNNs). However, these two symmetries are fundamentally different: The translation equivariance of CNNs corresponds to symmetries of the fixed domain acting on the image signals (sometimes known as active symmetries), whereas in GNNs any permutation acts on both the graph signals and the graph domain (sometimes described as passive symmetries). In this work, we focus on the active symmetries of GNNs, by considering a learning setting where signals are supported on a fixed graph. In this case, the natural symmetries of GNNs are the automorphisms of the graph. Since real-world graphs tend to be asymmetric, we relax the notion of symmetries by formalizing approximate symmetries via graph coarsening. We present a bias-variance formula that quantifies the tradeoff between the loss in expressivity and the gain in the regularity of the learned estimator, depending on the chosen symmetry group. To illustrate our approach, we conduct extensive experiments on image inpainting, traffic flow prediction, and human pose estimation with different choices of symmetries. We show theoretically and empirically that the best generalization performance can be achieved by choosing a suitably larger group than the graph automorphism, but smaller than the permutation group.


Fine-grained Expressivity of Graph Neural Networks

arXiv.org Artificial Intelligence

Numerous recent works have analyzed the expressive power of message-passing graph neural networks (MPNNs), primarily utilizing combinatorial techniques such as the $1$-dimensional Weisfeiler-Leman test ($1$-WL) for the graph isomorphism problem. However, the graph isomorphism objective is inherently binary, not giving insights into the degree of similarity between two given graphs. This work resolves this issue by considering continuous extensions of both $1$-WL and MPNNs to graphons. Concretely, we show that the continuous variant of $1$-WL delivers an accurate topological characterization of the expressive power of MPNNs on graphons, revealing which graphs these networks can distinguish and the level of difficulty in separating them. We identify the finest topology where MPNNs separate points and prove a universal approximation theorem. Consequently, we provide a theoretical framework for graph and graphon similarity combining various topological variants of classical characterizations of the $1$-WL. In particular, we characterize the expressive power of MPNNs in terms of the tree distance, which is a graph distance based on the concept of fractional isomorphisms, and substructure counts via tree homomorphisms, showing that these concepts have the same expressive power as the $1$-WL and MPNNs on graphons. Empirically, we validate our theoretical findings by showing that randomly initialized MPNNs, without training, exhibit competitive performance compared to their trained counterparts. Moreover, we evaluate different MPNN architectures based on their ability to preserve graph distances, highlighting the significance of our continuous $1$-WL test in understanding MPNNs' expressivity.


A Spectral Analysis of Graph Neural Networks on Dense and Sparse Graphs

arXiv.org Artificial Intelligence

In this work we propose a random graph model that can produce graphs at different levels of sparsity. We analyze how sparsity affects the graph spectra, and thus the performance of graph neural networks (GNNs) in node classification on dense and sparse graphs. We compare GNNs with spectral methods known to provide consistent estimators for community detection on dense graphs, a closely related task. We show that GNNs can outperform spectral methods on sparse graphs, and illustrate these results with numerical examples on both synthetic and real graphs.


A Short Tutorial on The Weisfeiler-Lehman Test And Its Variants

arXiv.org Machine Learning

Graph neural networks are designed to learn functions on graphs. Typically, the relevant target functions are invariant with respect to actions by permutations. Therefore the design of some graph neural network architectures has been inspired by graph-isomorphism algorithms. The classical Weisfeiler-Lehman algorithm (WL) -- a graph-isomorphism test based on color refinement -- became relevant to the study of graph neural networks. The WL test can be generalized to a hierarchy of higher-order tests, known as $k$-WL. This hierarchy has been used to characterize the expressive power of graph neural networks, and to inspire the design of graph neural network architectures. A few variants of the WL hierarchy appear in the literature. The goal of this short note is pedagogical and practical: We explain the differences between the WL and folklore-WL formulations, with pointers to existing discussions in the literature. We illuminate the differences between the formulations by visualizing an example.


Dimensionality reduction, regularization, and generalization in overparameterized regressions

arXiv.org Machine Learning

Overparameterization in deep learning is powerful: Very large models fit the training data perfectly and yet generalize well. This realization brought back the study of linear models for regression, including ordinary least squares (OLS), which, like deep learning, shows a "double descent" behavior. This involves two features: (1) The risk (out-of-sample prediction error) can grow arbitrarily when the number of samples $n$ approaches the number of parameters $p$, and (2) the risk decreases with $p$ at $p>n$, sometimes achieving a lower value than the lowest risk at $p


A Simple Spectral Failure Mode for Graph Convolutional Networks

arXiv.org Machine Learning

Abstract--We present a simple generative model in which spectral graph embedding for subsequent inference succeeds whereas unsupervised graph convolutional networks (GCN) fail. The geometrical insight is that the GCN is unable to look beyond the first non-informative spectral dimension. 's, we observe a Euclidean space and Email: shenc@udel.edu - Ningyuan (Teresa) Huang and Tianyi Chen are with the Department of's are corrupted through the Bernoulli noise The authors thank Wade Shen for providing the motivation for this investigation. Geometry for the canonical case where ASE succeeds but GCN fails. Figure 1 illustrates the failure mode for GCN.