Huang, Mingkai
Hybrid Differentially Private Federated Learning on Vertically Partitioned Data
Wang, Chang, Liang, Jian, Huang, Mingkai, Bai, Bing, Bai, Kun, Li, Hao
We present HDP-VFL, the first hybrid differentially private (DP) framework for vertical federated learning (VFL) to demonstrate that it is possible to jointly learn a generalized linear model (GLM) from vertically partitioned data with only a negligible cost, w.r.t. training time, accuracy, etc., comparing to idealized non-private VFL. Our work builds on the recent advances in VFL-based collaborative training among different organizations which rely on protocols like Homomorphic Encryption (HE) and Secure Multi-Party Computation (MPC) to secure computation and training. In particular, we analyze how VFL's intermediate result (IR) can leak private information of the training data during communication and design a DP-based privacy-preserving algorithm to ensure the data confidentiality of VFL participants. We mathematically prove that our algorithm not only provides utility guarantees for VFL, but also offers multi-level privacy, i.e. DP w.r.t. IR and joint differential privacy (JDP) w.r.t. model weights. Experimental results demonstrate that our work, under adequate privacy budgets, is quantitatively and qualitatively similar to GLMs, learned in idealized non-private VFL setting, rather than the increased cost in memory and processing time in most prior works based on HE or MPC. Our codes will be released if this paper is accepted.
A Federated Multi-View Deep Learning Framework for Privacy-Preserving Recommendations
Huang, Mingkai, Li, Hao, Bai, Bing, Wang, Chang, Bai, Kun, Wang, Fei
Privacy-preserving recommendations are recently gaining momentum, since the decentralized user data is increasingly harder to collect, by recommendation service providers, due to the serious concerns over user privacy and data security. This situation is further exacerbated by the strict government regulations such as Europe's General Data Privacy Regulations(GDPR). Federated Learning(FL) is a newly developed privacy-preserving machine learning paradigm to bridge data repositories without compromising data security and privacy. Thus many federated recommendation(FedRec) algorithms have been proposed to realize personalized privacy-preserving recommendations. However, existing FedRec algorithms, mostly extended from traditional collaborative filtering(CF) method, cannot address cold-start problem well. In addition, their performance overhead w.r.t. model accuracy, trained in a federated setting, is often non-negligible comparing to centralized recommendations. This paper studies this issue and presents FL-MV-DSSM, a generic content-based federated multi-view recommendation framework that not only addresses the cold-start problem, but also significantly boosts the recommendation performance by learning a federated model from multiple data source for capturing richer user-level features. The new federated multi-view setting, proposed by FL-MV-DSSM, opens new usage models and brings in new security challenges to FL in recommendation scenarios. We prove the security guarantees of \xxx, and empirical evaluations on FL-MV-DSSM and its variations with public datasets demonstrate its effectiveness. Our codes will be released if this paper is accepted.