Huang, Jonathan
MALT Diffusion: Memory-Augmented Latent Transformers for Any-Length Video Generation
Yu, Sihyun, Hahn, Meera, Kondratyuk, Dan, Shin, Jinwoo, Gupta, Agrim, Lezama, José, Essa, Irfan, Ross, David, Huang, Jonathan
Diffusion models are successful for synthesizing high-quality videos but are limited to generating short clips (e.g., 2-10 seconds). Synthesizing sustained footage (e.g. over minutes) still remains an open research question. In this paper, we propose MALT Diffusion (using Memory-Augmented Latent Transformers), a new diffusion model specialized for long video generation. MALT Diffusion (or just MALT) handles long videos by subdividing them into short segments and doing segment-level autoregressive generation. To achieve this, we first propose recurrent attention layers that encode multiple segments into a compact memory latent vector; by maintaining this memory vector over time, MALT is able to condition on it and continuously generate new footage based on a long temporal context. We also present several training techniques that enable the model to generate frames over a long horizon with consistent quality and minimal degradation. We validate the effectiveness of MALT through experiments on long video benchmarks. We first perform extensive analysis of MALT in long-contextual understanding capability and stability using popular long video benchmarks. For example, MALT achieves an FVD score of 220.4 on 128-frame video generation on UCF-101, outperforming the previous state-of-the-art of 648.4. Finally, we explore MALT's capabilities in a text-to-video generation setting and show that it can produce long videos compared with recent techniques for long text-to-video generation.
Representation Alignment for Generation: Training Diffusion Transformers Is Easier Than You Think
Yu, Sihyun, Kwak, Sangkyung, Jang, Huiwon, Jeong, Jongheon, Huang, Jonathan, Shin, Jinwoo, Xie, Saining
Recent studies have shown that the denoising process in (generative) diffusion models can induce meaningful (discriminative) representations inside the model, though the quality of these representations still lags behind those learned through recent self-supervised learning methods. We argue that one main bottleneck in training large-scale diffusion models for generation lies in effectively learning these representations. Moreover, training can be made easier by incorporating high-quality external visual representations, rather than relying solely on the diffusion models to learn them independently. We study this by introducing a straightforward regularization called REPresentation Alignment (REPA), which aligns the projections of noisy input hidden states in denoising networks with clean image representations obtained from external, pretrained visual encoders. The results are striking: our simple strategy yields significant improvements in both training efficiency and generation quality when applied to popular diffusion and flow-based transformers, such as DiTs and SiTs. For instance, our method can speed up SiT training by over 17.5$\times$, matching the performance (without classifier-free guidance) of a SiT-XL model trained for 7M steps in less than 400K steps. In terms of final generation quality, our approach achieves state-of-the-art results of FID=1.42 using classifier-free guidance with the guidance interval.
VideoPoet: A Large Language Model for Zero-Shot Video Generation
Kondratyuk, Dan, Yu, Lijun, Gu, Xiuye, Lezama, José, Huang, Jonathan, Hornung, Rachel, Adam, Hartwig, Akbari, Hassan, Alon, Yair, Birodkar, Vighnesh, Cheng, Yong, Chiu, Ming-Chang, Dillon, Josh, Essa, Irfan, Gupta, Agrim, Hahn, Meera, Hauth, Anja, Hendon, David, Martinez, Alonso, Minnen, David, Ross, David, Schindler, Grant, Sirotenko, Mikhail, Sohn, Kihyuk, Somandepalli, Krishna, Wang, Huisheng, Yan, Jimmy, Yang, Ming-Hsuan, Yang, Xuan, Seybold, Bryan, Jiang, Lu
We present VideoPoet, a language model capable of synthesizing high-quality video, with matching audio, from a large variety of conditioning signals. VideoPoet employs a decoder-only transformer architecture that processes multimodal inputs -- including images, videos, text, and audio. The training protocol follows that of Large Language Models (LLMs), consisting of two stages: pretraining and task-specific adaptation. During pretraining, VideoPoet incorporates a mixture of multimodal generative objectives within an autoregressive Transformer framework. The pretrained LLM serves as a foundation that can be adapted for a range of video generation tasks. We present empirical results demonstrating the model's state-of-the-art capabilities in zero-shot video generation, specifically highlighting VideoPoet's ability to generate high-fidelity motions. Project page: http://sites.research.google/videopoet/
DaTaSeg: Taming a Universal Multi-Dataset Multi-Task Segmentation Model
Gu, Xiuye, Cui, Yin, Huang, Jonathan, Rashwan, Abdullah, Yang, Xuan, Zhou, Xingyi, Ghiasi, Golnaz, Kuo, Weicheng, Chen, Huizhong, Chen, Liang-Chieh, Ross, David A
Observing the close relationship among panoptic, semantic and instance segmentation tasks, we propose to train a universal multi-dataset multi-task segmentation model: DaTaSeg.We use a shared representation (mask proposals with class predictions) for all tasks. To tackle task discrepancy, we adopt different merge operations and post-processing for different tasks. We also leverage weak-supervision, allowing our segmentation model to benefit from cheaper bounding box annotations. To share knowledge across datasets, we use text embeddings from the same semantic embedding space as classifiers and share all network parameters among datasets. We train DaTaSeg on ADE semantic, COCO panoptic, and Objects365 detection datasets. DaTaSeg improves performance on all datasets, especially small-scale datasets, achieving 54.0 mIoU on ADE semantic and 53.5 PQ on COCO panoptic. DaTaSeg also enables weakly-supervised knowledge transfer on ADE panoptic and Objects365 instance segmentation. Experiments show DaTaSeg scales with the number of training datasets and enables open-vocabulary segmentation through direct transfer. In addition, we annotate an Objects365 instance segmentation set of 1,000 images and will release it as a public benchmark.
Learning to Detect Novel and Fine-Grained Acoustic Sequences Using Pretrained Audio Representations
Kowtha, Vasudha, Marques, Miquel Espi, Huang, Jonathan, Zhang, Yichi, Avendano, Carlos
This work investigates pretrained audio representations for few shot Sound Event Detection. We specifically address the task of few shot detection of novel acoustic sequences, or sound events with semantically meaningful temporal structure, without assuming access to non-target audio. We develop procedures for pretraining suitable representations, and methods which transfer them to our few shot learning scenario. Our experiments evaluate the general purpose utility of our pretrained representations on AudioSet, and the utility of proposed few shot methods via tasks constructed from real-world acoustic sequences. Our pretrained embeddings are suitable to the proposed task, and enable multiple aspects of our few shot framework.
Uncertainty aware multimodal activity recognition with Bayesian inference
Subedar, Mahesh, Krishnan, Ranganath, Meyer, Paulo Lopez, Tickoo, Omesh, Huang, Jonathan
Deep neural networks (DNNs) provide state-of-the-art results for a multitude of applications, but the use of DNNs for multimodal audiovisual applications is still an unsolved problem. The current approaches that combine audiovisual information do not consider inherent uncertainty or leverage true classification confidence associated with each modality in the final decision. Our contribution in this work is to apply Bayesian variational inference to DNNs for audiovisual activity recognition and quantify model uncertainty along with principled confidence. We propose a novel approach that combines deterministic and variational layers to estimate model uncertainty and principled confidence. Our experiments with in- and out-of-distribution samples selected from a subset of the Moments-in-Time (MiT) dataset show more reliable confidence measure as compared to the non-Bayesian baseline. We also demonstrate the uncertainty estimates obtained from this framework can identify out-of-distribution data on the UCF101 and MiT datasets. In the multimodal setting, the proposed framework improved precision-recall AUC by 14.4% on the subset of MiT dataset as compared to non-Bayesian baseline.
Progressive Neural Architecture Search
Liu, Chenxi, Zoph, Barret, Neumann, Maxim, Shlens, Jonathon, Hua, Wei, Li, Li-Jia, Fei-Fei, Li, Yuille, Alan, Huang, Jonathan, Murphy, Kevin
We propose a new method for learning the structure of convolutional neural networks (CNNs) that is more efficient than recent state-of-the-art methods based on reinforcement learning and evolutionary algorithms. Our approach uses a sequential model-based optimization (SMBO) strategy, in which we search for structures in order of increasing complexity, while simultaneously learning a surrogate model to guide the search through structure space. Direct comparison under the same search space shows that our method is up to 5 times more efficient than the RL method of Zoph et al. (2018) in terms of number of models evaluated, and 8 times faster in terms of total compute. The structures we discover in this way achieve state of the art classification accuracies on CIFAR-10 and ImageNet.
Generative Models of Visually Grounded Imagination
Vedantam, Ramakrishna, Fischer, Ian, Huang, Jonathan, Murphy, Kevin
It is easy for people to imagine what a man with pink hair looks like, even if they have never seen such a person before. We call the ability to create images of novel semantic concepts visually grounded imagination. In this paper, we show how we can modify variational auto-encoders to perform this task. Our method uses a novel training objective, and a novel product-of-experts inference network, which can handle partially specified (abstract) concepts in a principled and efficient way. We also propose a set of easy-to-compute evaluation metrics that capture our intuitive notions of what it means to have good visual imagination, namely correctness, coverage, and compositionality (the 3 C's). Finally, we perform a detailed comparison of our method with two existing joint image-attribute VAE methods (the JMVAE method of Suzuki et.al. and the BiVCCA method of Wang et.al.) by applying them to two datasets: the MNIST-with-attributes dataset (which we introduce here), and the CelebA dataset.
Deep Knowledge Tracing
Piech, Chris, Bassen, Jonathan, Huang, Jonathan, Ganguli, Surya, Sahami, Mehran, Guibas, Leonidas J., Sohl-Dickstein, Jascha
Knowledge tracing, where a machine models the knowledge of a student as they interact with coursework, is an established and significantly unsolved problem in computer supported education.In this paper we explore the benefit of using recurrent neural networks to model student learning.This family of models have important advantages over current state of the art methods in that they do not require the explicit encoding of human domain knowledge,and have a far more flexible functional form which can capture substantially more complex student interactions.We show that these neural networks outperform the current state of the art in prediction on real student data,while allowing straightforward interpretation and discovery of structure in the curriculum.These results suggest a promising new line of research for knowledge tracing.
Tuned Models of Peer Assessment in MOOCs
Piech, Chris, Huang, Jonathan, Chen, Zhenghao, Do, Chuong, Ng, Andrew, Koller, Daphne
In massive open online courses (MOOCs), peer grading serves as a critical tool for scaling the grading of complex, open-ended assignments to courses with tens or hundreds of thousands of students. But despite promising initial trials, it does not always deliver accurate results compared to human experts. In this paper, we develop algorithms for estimating and correcting for grader biases and reliabilities, showing significant improvement in peer grading accuracy on real data with 63,199 peer grades from Coursera's HCI course offerings --- the largest peer grading networks analysed to date. We relate grader biases and reliabilities to other student factors such as student engagement, performance as well as commenting style. We also show that our model can lead to more intelligent assignment of graders to gradees.