Goto

Collaborating Authors

 Huang, Jianfeng


Unsupervised Multi-modal Feature Alignment for Time Series Representation Learning

arXiv.org Artificial Intelligence

In recent times, the field of unsupervised representation learning (URL) for time series data has garnered significant interest due to its remarkable adaptability across diverse downstream applications. Unsupervised learning goals differ from downstream tasks, making it tricky to ensure downstream task utility by focusing only on temporal feature characterization. Researchers have proposed multiple transformations to extract discriminative patterns implied in informative time series, trying to fill the gap. Despite the introduction of a variety of feature engineering techniques, e.g. spectral domain, wavelet transformed features, features in image form and symbolic features etc. the utilization of intricate feature fusion methods and dependence on heterogeneous features during inference hampers the scalability of the solutions. To address this, our study introduces an innovative approach that focuses on aligning and binding time series representations encoded from different modalities, inspired by spectral graph theory, thereby guiding the neural encoder to uncover latent pattern associations among these multi-modal features. In contrast to conventional methods that fuse features from multiple modalities, our proposed approach simplifies the neural architecture by retaining a single time series encoder, consequently leading to preserved scalability. We further demonstrate and prove mechanisms for the encoder to maintain better inductive bias. In our experimental evaluation, we validated the proposed method on a diverse set of time series datasets from various domains. Our approach outperforms existing state-of-the-art URL methods across diverse downstream tasks.


Unsupervised Industrial Anomaly Detection via Pattern Generative and Contrastive Networks

arXiv.org Artificial Intelligence

It is hard to collect enough flaw images for training deep learning network in industrial production. Therefore, existing industrial anomaly detection methods prefer to use CNN-based unsupervised detection and localization network to achieve this task. However, these methods always fail when there are varieties happened in new signals since traditional end-to-end networks suffer barriers of fitting nonlinear model in high-dimensional space. Moreover, they have a memory library by clustering the feature of normal images essentially, which cause it is not robust to texture change. To this end, we propose the Vision Transformer based (VIT-based) unsupervised anomaly detection network. It utilizes a hierarchical task learning and human experience to enhance its interpretability. Our network consists of pattern generation and comparison networks. Pattern generation network uses two VIT-based encoder modules to extract the feature of two consecutive image patches, then uses VIT-based decoder module to learn the human designed style of these features and predict the third image patch. After this, we use the Siamese-based network to compute the similarity of the generation image patch and original image patch. Finally, we refine the anomaly localization by the bi-directional inference strategy. Comparison experiments on public dataset MVTec dataset show our method achieves 99.8% AUC, which surpasses previous state-of-the-art methods. In addition, we give a qualitative illustration on our own leather and cloth datasets. The accurate segment results strongly prove the accuracy of our method in anomaly detection.