Huang, Hu
A Survey of Stance Detection on Social Media: New Directions and Perspectives
Zhang, Bowen, Dai, Genan, Niu, Fuqiang, Yin, Nan, Fan, Xiaomao, Wang, Senzhang, Cao, Xiaochun, Huang, Hu
In modern digital environments, users frequently express opinions on contentious topics, providing a wealth of information on prevailing attitudes. The systematic analysis of these opinions offers valuable insights for decision-making in various sectors, including marketing and politics. As a result, stance detection has emerged as a crucial subfield within affective computing, enabling the automatic detection of user stances in social media conversations and providing a nuanced understanding of public sentiment on complex issues. Recent years have seen a surge of research interest in developing effective stance detection methods, with contributions from multiple communities, including natural language processing, web science, and social computing. This paper provides a comprehensive survey of stance detection techniques on social media, covering task definitions, datasets, approaches, and future works. We review traditional stance detection models, as well as state-of-the-art methods based on large language models, and discuss their strengths and limitations. Our survey highlights the importance of stance detection in understanding public opinion and sentiment, and identifies gaps in current research. We conclude by outlining potential future directions for stance detection on social media, including the need for more robust and generalizable models, and the importance of addressing emerging challenges such as multi-modal stance detection and stance detection in low-resource languages.
Core Knowledge Learning Framework for Graph Adaptation and Scalability Learning
Zhang, Bowen, Huang, Zhichao, Dai, Genan, Xu, Guangning, Fan, Xiaomao, Huang, Hu
Graph classification is a pivotal challenge in machine learning, especially within the realm of graph-based data, given its importance in numerous real-world applications such as social network analysis, recommendation systems, and bioinformatics. Despite its significance, graph classification faces several hurdles, including adapting to diverse prediction tasks, training across multiple target domains, and handling small-sample prediction scenarios. Current methods often tackle these challenges individually, leading to fragmented solutions that lack a holistic approach to the overarching problem. In this paper, we propose an algorithm aimed at addressing the aforementioned challenges. By incorporating insights from various types of tasks, our method aims to enhance adaptability, scalability, and generalizability in graph classification. Motivated by the recognition that the underlying subgraph plays a crucial role in GNN prediction, while the remainder is task-irrelevant, we introduce the Core Knowledge Learning (\method{}) framework for graph adaptation and scalability learning. \method{} comprises several key modules, including the core subgraph knowledge submodule, graph domain adaptation module, and few-shot learning module for downstream tasks. Each module is tailored to tackle specific challenges in graph classification, such as domain shift, label inconsistencies, and data scarcity. By learning the core subgraph of the entire graph, we focus on the most pertinent features for task relevance. Consequently, our method offers benefits such as improved model performance, increased domain adaptability, and enhanced robustness to domain variations. Experimental results demonstrate significant performance enhancements achieved by our method compared to state-of-the-art approaches.
More is Better: Deep Domain Adaptation with Multiple Sources
Zhao, Sicheng, Chen, Hui, Huang, Hu, Xu, Pengfei, Ding, Guiguang
In many practical applications, it is often difficult and expensive to obtain large-scale labeled data to train state-of-the-art deep neural networks. Therefore, transferring the learned knowledge from a separate, labeled source domain to an unlabeled or sparsely labeled target domain becomes an appealing alternative. However, direct transfer often results in significant performance decay due to domain shift. Domain adaptation (DA) aims to address this problem by aligning the distributions between the source and target domains. Multi-source domain adaptation (MDA) is a powerful and practical extension in which the labeled data may be collected from multiple sources with different distributions. In this survey, we first define various MDA strategies. Then we systematically summarize and compare modern MDA methods in the deep learning era from different perspectives, followed by commonly used datasets and a brief benchmark. Finally, we discuss future research directions for MDA that are worth investigating.
A Logically Consistent Chain-of-Thought Approach for Stance Detection
Zhang, Bowen, Ding, Daijun, Jing, Liwen, Huang, Hu
Zero-shot stance detection (ZSSD) aims to detect stances toward unseen targets. Incorporating background knowledge to enhance transferability between seen and unseen targets constitutes the primary approach of ZSSD. However, these methods often struggle with a knowledge-task disconnect and lack logical consistency in their predictions. To address these issues, we introduce a novel approach named Logically Consistent Chain-of-Thought (LC-CoT) for ZSSD, which improves stance detection by ensuring relevant and logically sound knowledge extraction. LC-CoT employs a three-step process. Initially, it assesses whether supplementary external knowledge is necessary. Subsequently, it uses API calls to retrieve this knowledge, which can be processed by a separate LLM. Finally, a manual exemplar guides the LLM to infer stance categories, using an if-then logical structure to maintain relevance and logical coherence. This structured approach to eliciting background knowledge enhances the model's capability, outperforming traditional supervised methods without relying on labeled data.
Investigating Chain-of-thought with ChatGPT for Stance Detection on Social Media
Zhang, Bowen, Fu, Xianghua, Ding, Daijun, Huang, Hu, Li, Yangyang, Jing, Liwen
Stance detection predicts attitudes towards targets in texts and has gained attention with the rise of social media. Traditional approaches include conventional machine learning, early deep neural networks, and pre-trained fine-tuning models. However, with the evolution of very large pre-trained language models (VLPLMs) like ChatGPT (GPT-3.5), traditional methods face deployment challenges. The parameter-free Chain-of-Thought (CoT) approach, not requiring backpropagation training, has emerged as a promising alternative. This paper examines CoT's effectiveness in stance detection tasks, demonstrating its superior accuracy and discussing associated challenges.