Huang, Feiran
Knapsack Optimization-based Schema Linking for LLM-based Text-to-SQL Generation
Yuan, Zheng, Chen, Hao, Hong, Zijin, Zhang, Qinggang, Huang, Feiran, Huang, Xiao
Generating SQLs from user queries is a long-standing challenge, where the accuracy of initial schema linking significantly impacts subsequent SQL generation performance. However, current schema linking models still struggle with missing relevant schema elements or an excess of redundant ones. A crucial reason for this is that commonly used metrics, recall and precision, fail to capture relevant element missing and thus cannot reflect actual schema linking performance. Motivated by this, we propose an enhanced schema linking metric by introducing a restricted missing indicator. Accordingly, we introduce Knapsack optimization-based Schema Linking Agent (KaSLA), a plug-in schema linking agent designed to prevent the missing of relevant schema elements while minimizing the inclusion of redundant ones. KaSLA employs a hierarchical linking strategy that first identifies the optimal table linking and subsequently links columns within the selected table to reduce linking candidate space. In each linking process, it utilize a knapsack optimization approach to link potentially relevant elements while accounting for a limited tolerance of potential redundant ones.With this optimization, KaSLA-1.6B achieves superior schema linking results compared to large-scale LLMs, including deepseek-v3 with state-of-the-art (SOTA) schema linking method. Extensive experiments on Spider and BIRD benchmarks verify that KaSLA can significantly improve the SQL generation performance of SOTA text-to-SQL models by substituting their schema linking processes.
Benchmarking Large Language Models via Random Variables
Hong, Zijin, Wu, Hao, Dong, Su, Dong, Junnan, Xiao, Yilin, Zhang, Yujing, Wang, Zhu, Huang, Feiran, Li, Linyi, Yang, Hongxia, Huang, Xiao
Recent studies have raised concerns about the reliability of current mathematical benchmarks, highlighting issues such as simplistic design and potential data contamination. Therefore, creating a reliable benchmark that effectively evaluates the genuine capabilities of large language models (LLMs) in mathematical reasoning remains a significant challenge. To address this, we propose RV-Bench, a framework for Benchmarking LLMs via Random Variables in mathematical reasoning. Specifically, the background content of a random variable question (RV question) mirrors the original problem in existing benchmarks, but the variable combinations are randomized, making it "unseen" by the LLMs. Models must completely understand the question pattern of the original problem to correctly answer RV questions with various variable values. As a result, the LLM's genuine capability in mathematical reasoning is reflected by its accuracy and robustness on RV-Bench. We conducted extensive experiments on over 30 representative LLMs across more than 1000 RV questions. Our findings suggest that LLMs exhibit an imbalance in proficiency between encountered and "unseen" data domains. Proficiency generalization across similar mathematical reasoning tasks is verified to be limited by accuracy and robustness, but it can still be enhanced through test-time scaling.
Cold-Start Recommendation towards the Era of Large Language Models (LLMs): A Comprehensive Survey and Roadmap
Zhang, Weizhi, Bei, Yuanchen, Yang, Liangwei, Zou, Henry Peng, Zhou, Peilin, Liu, Aiwei, Li, Yinghui, Chen, Hao, Wang, Jianling, Wang, Yu, Huang, Feiran, Zhou, Sheng, Bu, Jiajun, Lin, Allen, Caverlee, James, Karray, Fakhri, King, Irwin, Yu, Philip S.
Cold-start problem is one of the long-standing challenges in recommender systems, focusing on accurately modeling new or interaction-limited users or items to provide better recommendations. Due to the diversification of internet platforms and the exponential growth of users and items, the importance of cold-start recommendation (CSR) is becoming increasingly evident. At the same time, large language models (LLMs) have achieved tremendous success and possess strong capabilities in modeling user and item information, providing new potential for cold-start recommendations. However, the research community on CSR still lacks a comprehensive review and reflection in this field. Based on this, in this paper, we stand in the context of the era of large language models and provide a comprehensive review and discussion on the roadmap, related literature, and future directions of CSR. Specifically, we have conducted an exploration of the development path of how existing CSR utilizes information, from content features, graph relations, and domain information, to the world knowledge possessed by large language models, aiming to provide new insights for both the research and industrial communities on CSR. Related resources of cold-start recommendations are collected and continuously updated for the community in https://github.com/YuanchenBei/Awesome-Cold-Start-Recommendation.
HNCSE: Advancing Sentence Embeddings via Hybrid Contrastive Learning with Hard Negatives
Liu, Wenxiao, Yang, Zihong, Li, Chaozhuo, Hong, Zijin, Ma, Jianfeng, Liu, Zhiquan, Zhang, Litian, Huang, Feiran
Unsupervised sentence representation learning remains a critical challenge in modern natural language processing (NLP) research. Recently, contrastive learning techniques have achieved significant success in addressing this issue by effectively capturing textual semantics. Many such approaches prioritize the optimization using negative samples. In fields such as computer vision, hard negative samples (samples that are close to the decision boundary and thus more difficult to distinguish) have been shown to enhance representation learning. However, adapting hard negatives to contrastive sentence learning is complex due to the intricate syntactic and semantic details of text. To address this problem, we propose HNCSE, a novel contrastive learning framework that extends the leading SimCSE approach. The hallmark of HNCSE is its innovative use of hard negative samples to enhance the learning of both positive and negative samples, thereby achieving a deeper semantic understanding. Empirical tests on semantic textual similarity and transfer task datasets validate the superiority of HNCSE.
CLR-Bench: Evaluating Large Language Models in College-level Reasoning
Dong, Junnan, Hong, Zijin, Bei, Yuanchen, Huang, Feiran, Wang, Xinrun, Huang, Xiao
Large language models (LLMs) have demonstrated their remarkable performance across various language understanding tasks. While emerging benchmarks have been proposed to evaluate LLMs in various domains such as mathematics and computer science, they merely measure the accuracy in terms of the final prediction on multi-choice questions. However, it remains insufficient to verify the essential understanding of LLMs given a chosen choice. To fill this gap, we present CLR-Bench to comprehensively evaluate the LLMs in complex college-level reasoning. Specifically, (i) we prioritize 16 challenging college disciplines in computer science and artificial intelligence. The dataset contains 5 types of questions, while each question is associated with detailed explanations from experts. (ii) To quantify a fair evaluation of LLMs' reasoning ability, we formalize the criteria with two novel metrics. Q$\rightarrow$A is utilized to measure the performance of direct answer prediction, and Q$\rightarrow$AR effectively considers the joint ability to answer the question and provide rationale simultaneously. Extensive experiments are conducted with 40 LLMs over 1,018 discipline-specific questions. The results demonstrate the key insights that LLMs, even the best closed-source LLM, i.e., GPT-4 turbo, tend to `guess' the college-level answers. It shows a dramatic decrease in accuracy from 63.31% Q$\rightarrow$A to 39.00% Q$\rightarrow$AR, indicating an unsatisfactory reasoning ability.
Next-Generation Database Interfaces: A Survey of LLM-based Text-to-SQL
Hong, Zijin, Yuan, Zheng, Zhang, Qinggang, Chen, Hao, Dong, Junnan, Huang, Feiran, Huang, Xiao
Generating accurate SQL from natural language questions (text-to-SQL) is a long-standing challenge due to the complexities in user question understanding, database schema comprehension, and SQL generation. Conventional text-to-SQL systems, comprising human engineering and deep neural networks, have made substantial progress. Subsequently, pre-trained language models (PLMs) have been developed and utilized for text-to-SQL tasks, achieving promising performance. As modern databases become more complex, the corresponding user questions also grow more challenging, causing PLMs with parameter constraints to produce incorrect SQL. This necessitates more sophisticated and tailored optimization methods, which, in turn, restricts the applications of PLM-based systems. Recently, large language models (LLMs) have demonstrated significant capabilities in natural language understanding as the model scale increases. Therefore, integrating LLM-based implementation can bring unique opportunities, improvements, and solutions to text-to-SQL research. In this survey, we present a comprehensive review of LLM-based text-to-SQL. Specifically, we propose a brief overview of the technical challenges and the evolutionary process of text-to-SQL. Then, we provide a detailed introduction to the datasets and metrics designed to evaluate text-to-SQL systems. After that, we present a systematic analysis of recent advances in LLM-based text-to-SQL. Finally, we discuss the remaining challenges in this field and propose expectations for future research directions.
GPT4Rec: Graph Prompt Tuning for Streaming Recommendation
Zhang, Peiyan, Yan, Yuchen, Zhang, Xi, Kang, Liying, Li, Chaozhuo, Huang, Feiran, Wang, Senzhang, Kim, Sunghun
In the realm of personalized recommender systems, the challenge of adapting to evolving user preferences and the continuous influx of new users and items is paramount. Conventional models, typically reliant on a static training-test approach, struggle to keep pace with these dynamic demands. Streaming recommendation, particularly through continual graph learning, has emerged as a novel solution. However, existing methods in this area either rely on historical data replay, which is increasingly impractical due to stringent data privacy regulations; or are inability to effectively address the over-stability issue; or depend on model-isolation and expansion strategies. To tackle these difficulties, we present GPT4Rec, a Graph Prompt Tuning method for streaming Recommendation. Given the evolving user-item interaction graph, GPT4Rec first disentangles the graph patterns into multiple views. After isolating specific interaction patterns and relationships in different views, GPT4Rec utilizes lightweight graph prompts to efficiently guide the model across varying interaction patterns within the user-item graph. Firstly, node-level prompts are employed to instruct the model to adapt to changes in the attributes or properties of individual nodes within the graph. Secondly, structure-level prompts guide the model in adapting to broader patterns of connectivity and relationships within the graph. Finally, view-level prompts are innovatively designed to facilitate the aggregation of information from multiple disentangled views. These prompt designs allow GPT4Rec to synthesize a comprehensive understanding of the graph, ensuring that all vital aspects of the user-item interactions are considered and effectively integrated. Experiments on four diverse real-world datasets demonstrate the effectiveness and efficiency of our proposal.
Knowledge-to-SQL: Enhancing SQL Generation with Data Expert LLM
Hong, Zijin, Yuan, Zheng, Chen, Hao, Zhang, Qinggang, Huang, Feiran, Huang, Xiao
Generating accurate SQL queries for user questions (text-to-SQL) has been a long-standing challenge since it requires a deep understanding of both the user's question and the corresponding database schema in order to retrieve the desired content accurately. Existing methods rely on the comprehensive capability of large language models (LLMs) to generate the SQL. However, some necessary knowledge is not explicitly included in the database schema and user question or has been learned by LLMs. Thus, the generated SQL of the knowledge-insufficient questions may be inaccurate, negatively influencing the text-to-SQL models' performance and robustness. To address this challenge, we propose the Knowledge-to-SQL framework, which employs tailored Data Expert LLM (DELLM) to provide helpful knowledge for all text-to-SQL models. Specifically, we introduce the detailed implementation of DELLM regarding table reading and the basic fine-tuning process. We further propose a Preference Learning via Database Feedback (PLDBF) strategy, refining the DELLM to generate more helpful knowledge for LLMs. Extensive experiments verify that DELLM can enhance the state-of-the-art approaches for text-to-SQL tasks. The corresponding code of DELLM is released for further research.
Structure Guided Large Language Model for SQL Generation
Zhang, Qinggang, Dong, Junnan, Chen, Hao, Li, Wentao, Huang, Feiran, Huang, Xiao
Generating accurate Structured Querying Language (SQL) is a long-standing problem, especially in matching users' semantic queries with structured databases and then generating structured SQL. Existing models typically input queries and database schemas into the LLM and rely on the LLM to perform semantic-structure matching and generate structured SQL. However, such solutions overlook the structural information within user queries and databases, which can be utilized to enhance the generation of structured SQL. This oversight can lead to inaccurate or unexecutable SQL generation. To fully exploit the structure, we propose a structure-to-SQL framework, which leverages the inherent structure information to improve the SQL generation of LLMs. Specifically, we introduce our Structure Guided SQL~(SGU-SQL) generation model. SGU-SQL first links user queries and databases in a structure-enhanced manner. It then decomposes complicated linked structures with grammar trees to guide the LLM to generate the SQL step by step. Extensive experiments on two benchmark datasets illustrate that SGU-SQL can outperform sixteen SQL generation baselines.
Alleviating Behavior Data Imbalance for Multi-Behavior Graph Collaborative Filtering
Zhang, Yijie, Bei, Yuanchen, Yang, Shiqi, Chen, Hao, Li, Zhiqing, Chen, Lijia, Huang, Feiran
Graph collaborative filtering, which learns user and item representations through message propagation over the user-item interaction graph, has been shown to effectively enhance recommendation performance. However, most current graph collaborative filtering models mainly construct the interaction graph on a single behavior domain (e.g. click), even though users exhibit various types of behaviors on real-world platforms, including actions like click, cart, and purchase. Furthermore, due to variations in user engagement, there exists an imbalance in the scale of different types of behaviors. For instance, users may click and view multiple items but only make selective purchases from a small subset of them. How to alleviate the behavior imbalance problem and utilize information from the multiple behavior graphs concurrently to improve the target behavior conversion (e.g. purchase) remains underexplored. To this end, we propose IMGCF, a simple but effective model to alleviate behavior data imbalance for multi-behavior graph collaborative filtering. Specifically, IMGCF utilizes a multi-task learning framework for collaborative filtering on multi-behavior graphs. Then, to mitigate the data imbalance issue, IMGCF improves representation learning on the sparse behavior by leveraging representations learned from the behavior domain with abundant data volumes. Experiments on two widely-used multi-behavior datasets demonstrate the effectiveness of IMGCF.