Goto

Collaborating Authors

 Huang, Fan


Diffusion-augmented Graph Contrastive Learning for Collaborative Filter

arXiv.org Artificial Intelligence

Graph-based collaborative filtering has been established as a prominent approach in recommendation systems, leveraging the inherent graph topology of user-item interactions to model high-order connectivity patterns and enhance recommendation performance. Recent advances in Graph Contrastive Learning (GCL) have demonstrated promising potential to alleviate data sparsity issues by improving representation learning through contrastive view generation and mutual information maximization. However, existing approaches lack effective data augmentation strategies. Structural augmentation risks distorting fundamental graph topology, while feature-level perturbation techniques predominantly employ uniform noise scales that fail to account for node-specific characteristics. To solve these challenges, we propose Diffusion-augmented Contrastive Learning (DGCL), an innovative framework that integrates diffusion models with contrastive learning for enhanced collaborative filtering. Our approach employs a diffusion process that learns node-specific Gaussian distributions of representations, thereby generating semantically consistent yet diversified contrastive views through reverse diffusion sampling. DGCL facilitates adaptive data augmentation based on reconstructed representations, considering both semantic coherence and node-specific features. In addition, it explores unrepresented regions of the latent sparse feature space, thereby enriching the diversity of contrastive views. Extensive experimental results demonstrate the effectiveness of DGCL on three public datasets.


ToBlend: Token-Level Blending With an Ensemble of LLMs to Attack AI-Generated Text Detection

arXiv.org Artificial Intelligence

The robustness of AI-content detection models against sophisticated adversarial strategies, such as paraphrasing or word switching, is a rising concern in natural language generation (NLG) applications. This study proposes ToBlend, a novel token-level ensemble text generation method to challenge the robustness of current AI-content detection approaches by utilizing multiple sets of candidate generative large language models (LLMs). By randomly sampling token(s) from candidate LLMs sets, we find ToBlend significantly drops the performance of most mainstream AI-content detection methods. We evaluate the text quality produced under different ToBlend settings based on annotations from experienced human experts. We proposed a fine-tuned Llama3.1 model to distinguish the ToBlend generated text more accurately. Our findings underscore our proposed text generation approach's great potential in deceiving and improving detection models. Our datasets, codes, and annotations are open-sourced.


Establishing Rigorous and Cost-effective Clinical Trials for Artificial Intelligence Models

arXiv.org Artificial Intelligence

A profound gap persists between artificial intelligence (AI) and clinical practice in medicine, primarily due to the lack of rigorous and cost-effective evaluation methodologies. State-of-the-art and state-of-the-practice AI model evaluations are limited to laboratory studies on medical datasets or direct clinical trials with no or solely patient-centered controls. Moreover, the crucial role of clinicians in collaborating with AI, pivotal for determining its impact on clinical practice, is often overlooked. For the first time, we emphasize the critical necessity for rigorous and cost-effective evaluation methodologies for AI models in clinical practice, featuring patient/clinician-centered (dual-centered) AI randomized controlled trials (DC-AI RCTs) and virtual clinician-based in-silico trials (VC-MedAI) as an effective proxy for DC-AI RCTs. Leveraging 7500 diagnosis records from two-phase inaugural DC-AI RCTs across 14 medical centers with 125 clinicians, our results demonstrate the necessity of DC-AI RCTs and the effectiveness of VC-MedAI. Notably, VC-MedAI performs comparably to human clinicians, replicating insights and conclusions from prospective DC-AI RCTs. We envision DC-AI RCTs and VC-MedAI as pivotal advancements, presenting innovative and transformative evaluation methodologies for AI models in clinical practice, offering a preclinical-like setting mirroring conventional medicine, and reshaping development paradigms in a cost-effective and fast-iterative manner. Chinese Clinical Trial Registration: ChiCTR2400086816.


ChatGPT Rates Natural Language Explanation Quality Like Humans: But on Which Scales?

arXiv.org Artificial Intelligence

As AI becomes more integral in our lives, the need for transparency and responsibility grows. While natural language explanations (NLEs) are vital for clarifying the reasoning behind AI decisions, evaluating them through human judgments is complex and resource-intensive due to subjectivity and the need for fine-grained ratings. This study explores the alignment between ChatGPT and human assessments across multiple scales (i.e., binary, ternary, and 7-Likert scale). We sample 300 data instances from three NLE datasets and collect 900 human annotations for both informativeness and clarity scores as the text quality measurement. We further conduct paired comparison experiments under different ranges of subjectivity scores, where the baseline comes from 8,346 human annotations. Our results show that ChatGPT aligns better with humans in more coarse-grained scales. Also, paired comparisons and dynamic prompting (i.e., providing semantically similar examples in the prompt) improve the alignment. This research advances our understanding of large language models' capabilities to assess the text explanation quality in different configurations for responsible AI development.


Cold & Warm Net: Addressing Cold-Start Users in Recommender Systems

arXiv.org Artificial Intelligence

Cold-start recommendation is one of the major challenges faced by recommender systems (RS). Herein, we focus on the user cold-start problem. Recently, methods utilizing side information or meta-learning have been used to model cold-start users. However, it is difficult to deploy these methods to industrial RS. There has not been much research that pays attention to the user cold-start problem in the matching stage. In this paper, we propose Cold & Warm Net based on expert models who are responsible for modeling cold-start and warm-up users respectively. A gate network is applied to incorporate the results from two experts. Furthermore, dynamic knowledge distillation acting as a teacher selector is introduced to assist experts in better learning user representation. With comprehensive mutual information, features highly relevant to user behavior are selected for the bias net which explicitly models user behavior bias. Finally, we evaluate our Cold & Warm Net on public datasets in comparison to models commonly applied in the matching stage and it outperforms other models on all user types. The proposed model has also been deployed on an industrial short video platform and achieves a significant increase in app dwell time and user retention rate.


Is ChatGPT better than Human Annotators? Potential and Limitations of ChatGPT in Explaining Implicit Hate Speech

arXiv.org Artificial Intelligence

Recent studies have alarmed that many online hate speeches are implicit. With its subtle nature, the explainability of the detection of such hateful speech has been a challenging problem. In this work, we examine whether ChatGPT can be used for providing natural language explanations (NLEs) for implicit hateful speech detection. We design our prompt to elicit concise ChatGPT-generated NLEs and conduct user studies to evaluate their qualities by comparison with human-written NLEs. We discuss the potential and limitations of ChatGPT in the context of implicit hateful speech research.


Chain of Explanation: New Prompting Method to Generate Higher Quality Natural Language Explanation for Implicit Hate Speech

arXiv.org Artificial Intelligence

The potential of sequence-to-sequence (Seq2Seq) models and prompting Recent studies have exploited advanced generative language models methods has not been fully explored [4]. Moreover, traditional evaluation to generate Natural Language Explanations (NLE) for why a certain metrics, such as BLEU [20] and Rouge [18], applied in NLE text could be hateful. We propose the Chain of Explanation (CoE) generation for hate speech, may also not be able to comprehensively Prompting method, using the heuristic words and target group, to capture the quality of the generated explanations because they generate high-quality NLE for implicit hate speech. We improved heavily rely on the word-level overlaps [3]. To fill those gaps, we the BLUE score from 44.0 to 62.3 for NLE generation by providing propose a Chain of Explanations (CoE) prompt method to generate accurate target information. We then evaluate the quality of generated high-quality NLE distinguishing the implicit hate speech from nonhateful NLE using various automatic metrics and human annotations tweets.


Network Activities Recognition and Analysis Based on Supervised Machine Learning Classification Methods Using J48 and Na\"ive Bayes Algorithm

arXiv.org Artificial Intelligence

Network activities recognition has always been a significant component of intrusion detection. However, with the increasing network traffic flow and complexity of network behavior, it is becoming more and more difficult to identify the specific behavior quickly and accurately by user network monitoring software. It also requires the system security staff to pay close attention to the latest intrusion monitoring technology and methods. All of these greatly increase the difficulty and complexity of intrusion detection tasks. The application of machine learning methods based on supervised classification technology would help to liberate the network security staff from the heavy and boring tasks. A finetuned model would accurately recognize user behavior, which could provide persistent monitoring with a relative high accuracy and good adaptability. Finally, the results of network activities recognition by J48 and Na\"ive Bayes algorithms are introduced and evaluated.